

Tracing the Oxygen-related Gas Composition of Titan's atmosphere with Herschel

Miriam Rengel

Max-Planck-Institut für Sonnensystemforschung, Germany European Space Astronomy Centre, Spain

Moreno R., Courtin R., Lellouch E., Sagawa H.; Hartogh P., Swinyard B., Lara M., Feuchtgruber H., Jarchow C., Fulton T., Cernicharo J., Bockelée-Morvan D., Biver N., Banaszkiewicz M., González A.

1. Introduction

Why Titan?

Titan is covered by a dense atmosphere, which is complex and diverse!

More complex molecules

More complex molecules

1. Introduction

Why Titan?

- What are the abundances of these species?
- What is the origin of them in Titan's atmosphere?
- What are the implications for the formation and evolution of Titan?

1. Introduction

Oxygen-related Spectroscopy of Titan has been already performed by:

Ground-based observations have also improved our knowledge of Titan's oxygen-related atmospheric composition:

4-m Mayall Telescope

Lutz et al. 1983 RAM 30-m and JCMT

OVRO

Muhleman et al. 1984 APEX

IRAM 30-m

Marten et al. 198 ALMA

Hidayat et al. 1998Rengel et al. 2011Serigano et al. 2016water in the universe : from clouds to oceans- ESTEC, 12-15 april 2016

How we can further improve our knowledge of Titan's oxygen-related atmospheric composition ?

A new window was opened...

Herschel Era

Instruments onboard Herschel:

Heterodyne Instrument for the Far-Infrared (HIFI).

Resolutions: 140, 280, 560 kHz, 1.1 MHz

THz: 0.4	SIS Te 8 ♦ 0.64	chnolog →0.80	y →0.96	→1.12	→ 1.27	HEB Technology 1.41-+1.91
HIFI Bands	1	2	3	4	5	6 7
µm: 625→468 → 375 → 312 → 268 → 236 213→157						
- 1150	GH:	7	14	410	-191	0 GHz

3 bands in total: 55-72 μm, 72-102 μm and 102-210 μ

Photodetector Array Camera and Spectrometer (PACS). <u>55 – 210 µm</u>

Spectral and Photometric Imaging Receiver (SPIRE). PI: M. Griffin, Cardiff University

Photometer: 250, 350, 500 μm Spectrometer: 194-672 µm.

Titan's Spectroscopy in the Herschel Era

In the framework of the KP *"Water and related chemistry in the Solar System"* (PI: Hartogh)

Exploration of the FIR and submm range with high sensitivity

•55 – 671 μ m is a rich region with numerous rotational transitions of water and other trace gases

•These line transitions are stronger than those accesible from Earth

•HIFI/PACS/SPIRE higher spectral resolution and sensitivity than previous instruments

CH₄, CO, HCN

CH₄, CO, HCN

CH₄ CO HCN H₂O

CO with Herschel /PACS and SPIRE

Numerous spectral emission features due to:

CO with Herschel /PACS and SPIRE

Numerous spectral emission features due to:

Observed and best-fit simulated CO lines

Wavelength [µm] Mixing ratio [ppm]

water in the universe : from clouds to oceans-ESTEC, 12-15 april 2016

Reference

Courtin et al. 2011

De Kok et al 2007

Rengel et al. 2011

Gurwell et al. 2012

Rengel et al. 2014

Serigano et al. 2016

Isotopic ratio ¹²C/¹³C in CO

Isotopic ratio ¹²C/¹³C in CO

T

Isotopic ratio ¹⁶O/¹⁸O in CO

Measurement	¹⁶ O / ¹⁸ O	Reference		
JCMT	~250	Owen et al. 1999 (never-published)		
SMA	400 ± 41	Gurwell 2008 (unpublished)		
Herschel/SPIRE	380 ± 60	Courtin et al. 2012		
ALMA	414 ± 45	Serigano et al. 2016		

- First documented measurement of Titan's ¹⁶O/¹⁸O in CO
- Value 24% lower than the Terrestrial ratio (Earth = 500)
- → $^{16}O/^{18}O$ depletion in Titan (enrichment of ^{18}O).

What is the origin?

Isotopic ratio ¹⁶O/¹⁸O in CO

Measurement	¹⁶ O/ ¹⁸ O	Reference
JCMT	~250	Owen et al. 1999 (never-published)
SMA	400 ± 41	Gurwell 2008 (unpublished)
Herschel/SPIRE	380 ± 60	Courtin et al. 2012
ALMA	414 ± 45	Serigano et al. 2016

- First documented measurement of Titan's ¹⁶O/¹⁸O in CO
- Value 24% lower than the Terrestrial ratio (Earth = 500)

→ $^{16}O/^{18}O$ depletion in Titan (enrichment of ^{18}O).

What is the origin?

Precipitation of O⁺ or O from the Enceladus Torus

Further investigations :

16**0/**18**0**

- evolution of oxygen on Titan
- Oxygen processes in Titan's atmosphere

What is the vertical profile of H₂O? Can we disentangle the various sources?

1.27 ± 0.03 Best-fit volume mixing ratio

Water Inventory with Herschel /PACS and HIFI E Water Vapour in Titan £ 0.02 0.08 HIFI / Herschel Temperature temperature H_2O 0.018 0.07 0.016 0.06 Antenna 0.05 0.0 Antenna 0.04 0.012 1097.36 1097.37 556.93 556.94 Frequency (GHz) Frequency (GHz) 100 150 200 250 300 400 500 550 600 650 700 Ō 50 350 450

Five dedicated Water vapour line emission with Herschel/PACS and HIFI

Water Vapour in Titan

PACS / Herschel

75.3 75.4 75.5

Wavelength (µm)

1.02

1.1

1.05

66.4 66.45 66.5

Wavelength (µm)

Line/Continuum

1.03

1.02

1.01

0.99

108

Wavelength

Moreno et al. 2012

Water Inventory with Herschel /PACS and SPIRE

Surprise: Unexpected detection of hydrogen isocyanide (HNC) → a specie not previously identified in Titan's atmosphere

Water vertical distribution

- None of the previous water models provides an adequate simultaneous match to the PACS and HIFI observations
- → Photochemical models for water must be revised

Observations vs. previous models

Fig. 7. Synthetic spectra computed considering several previously proposed H_2O profiles: Coustenis et al. (1998), Hörst et al. (2008) (model D and model A), and rescaled versions of these models. None of the models provides an adequate simultaneous match to the PACS observation at 75 μ m (top) and HIFI at 557 GHz (bottom).

Determination of the abundance of the trace constituents: Water vertical distribution

P r e s s u r e dependence law as $q=q_0(p_0/p)^n$

 q_0 is the mixing ratio at the reference pressure level p_0

 $q_0 = 2.3 \text{ x}10^{-11} \text{ at } p_0 = 12.1 \text{ mbar}$ n = 0.49Column density: 1.2 (± 0.2) 10¹⁴ cm ⁻². *Moreno et al. 2012* 26

Determination of the abundance of the trace constituents: Water vertical distribution

P r e s s u r e dependence law as $q=q_0(p_0/p)^n$

 q_0 is the mixing ratio at the reference pressure level p_0

 $q_0 = 2.3 \text{ x}10^{-11} \text{ at } p_0 = 12.1 \text{ mbar}$ n = 0.49Column density: 1.2 (± 0.2) 10¹⁴ cm ⁻². Moreno et al. 2012 27

The S_a distribution is also compatible with the PACS lines from the full scan: computations of the synthetic spectra with S_a (Moreno et al. 2012).

Detection for first time

Rengel et al. 2014

 H_2O profile can be reproduced by invoking a OH/H₂O influx of (2.7-3.4) 10⁵mol cm⁻²s⁻¹

Reflects a temporal change in the oxygen influx into Titan

4.- Conclusion

Herschel's Legacy

New Survey between 51 and 671 μm: CH₄, CO, HCN, H₂O, isotopes
Determination of abundances
Unexpected detection of HNC
Measurement of ¹²C/¹³C and ¹⁶O/¹⁸O ratio

Emerged oxygen-related Implications:

 ¹⁸O enrichment in Titan's atmosphere: Precipitation of O⁺ or O from the Enceladus plume activity (¹⁶O/¹⁸O)

 We now know the content of water vapour in Titan (different as the predictions) and from where is coming from

Acknowledgments

- HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U.Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronómico Nacional (IGN), Centro de Astrobiología (CSIC-INTA). Sweden: Chalmers University of Technology MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC.
- PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KUL, CSL, IMEC (Belgium); CEA, OAMP (France); MPIA (Germany); IFSI, OAP/AOT, OAA/CAISMI, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI (Italy), and CICT/MCT (Spain). Additional funding support for some instrument activities has been provided by ESA.
- SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UKSA (UK); and NASA (USA).