FUV and X-ray Irradiation in Star-forming Regions

Arnold O. Benz Ewine F. van Dishoeck Simon Bruderer

1. Probe chemical network of water in YSO envelopes and outflows under far-UV and X-ray irradiation

2. Estimate ionizing far-UV and X-ray flux

Herschel/HIFI Observations of hydrides towards star-forming regions

< 12 km/s relative to systemic velocity

W3 IRS5

7 **HCO**⁺

Group I Molecules (H,O⁺, SH⁺, HCO⁺, CH, OH, NH)

predominantly

- in emission

- narrow line width (< 5 km/s)
- unshifted relative to systemic velocity

comparable in line width to
- ¹³CO (10-9) (San José Garcia et al. 2013)
- H₂O narrow component (Kristensen et al. 2013)

 \rightarrow origin in envelope

Group II Molecules (CH⁺, OH⁺, H₂O⁺, C⁺)

predominantly

- in absorption
- medium line width (5 10 km/s)
- blue-shifted

 \rightarrow origin in outflow wind or shock

CH $({}^{3}/_{2} - {}^{1}/_{2})$ 536 GHz group I CH⁺ (0-1) 835 GHz group II

 $H_2O(1_{10}-1_{01})$ 557 GHz

CH+ (0-1) 835 GHz group II

H₂O (1₁₀-1₀₁) 557 GHz

Possible Interpretation (Group II)

medium line width (5-10 km/s) \rightarrow shock or wind

blue-shift (~10 km/s) \rightarrow related to outflow

ionized \rightarrow internal irraditation

Questions

- why absorption ?
- relation to H₂O?

Comparison in column density: observations/theory 2D-model envelope with outflow cavity (AFGL 2591)

Bruderer+ 10, Benz+ 12 1. Probe chemical network of water in YSO envelopes and outflows under far-UV and X-ray irradiation

2. Estimate ionizing irradiation from CH⁺/OH⁺ ratio

Object	$\frac{N(CH^+)}{N(OH^+)}$	$\frac{N(\text{OH}^+)}{N(\text{H}_2\text{O}^+)}$	$\frac{N(C^+)}{N(CH^+)}$				
NGC1333 I2A	>2.1	_	43000				
NGC1333 I4A	4.1	>0.39	≤ 16000				
NGC1333 I4B	>0.48		$<\!\!170000$				
Ser SMM1	0.21	$\geq \! 15.5$	3100				
L 1489	_						
NGC7129 FIRS2	0.75	> 1.5					
W3 IRS5	5.0	2.7	> 130000				
W3 IRS5 emission	31.5	_	> 580000				
NGC6334 I	1.8	> 124.0					
NGC6334 I(N)	1.4	> 36.1					
AFGL 2591	1.3	19.4	>28000				
S 140	1.8	> 13.6	≥ 8800				
NGC7538 IRS1	0.48	>24.5					

model

- $G_0 = 0$ ISRF
- G₀ = 1 ISRF
- G₀ = 10 ISRF
- $G_0 = 10^2 \text{ ISRF}$
- $G_0 = 10^3 \text{ ISRF}$
- G₀ = 10⁴ ISRF
- G₀ = 10⁵ ISRF
- G₀ = 10⁶ ISRF

observations

Chemical model no geometry (0D) Variables: T, FUV, n

lower H_2 density \rightarrow lower irradiation requirement

FUV Irradiation at location of molecules from observed CH+/OH+ ratios

Object	radius	density	line	G_0	
	[AU]	$[\mathrm{cm}^{-3}]$	mode	ISRF	
NGC1333 I4A	2500	$1.3 \times 10^{\circ}$	abs.	200 - 400	
Ser SMM1	4400	6.0×10^{5}	abs.	2 - 8	
AFGL 2591	35000	7.0×10^{4}	abs.	20 - 80	
W3 IRS5	21000	1.1×10^{5}	abs.	80 - 200	
W3 IRS5	21000	1.1×10^{5}	em.	300 - 600	
Assumptions:	- 0D chemical model				
	- FUV irradiation at Herschel beam radius				
	- density at Herschel beam radius				
	- gas temperature < 100 K Benz+				

What we have learnt

- Ionized hydrides detected in star-forming regions, but often in absorption
- CH⁺ and OH⁺ correlate in line shift, and have similar line width and column density
- CH⁺/OH⁺ is enhanced by internal irradiation and/or high temperature or low H₂ density
- X-ray signatures not detected (Herschel beam too large)
- Evidence for 2–400 ISRF FUV irradiation in low-mass class 0 objects, requiring up to 1.5 L_{sun} if source at protostar