The Henschel spectroscopic view toward Sgr cA"

Miriam G. Santa-Maria^{α}, J. R. Goicoechea^{α}, J. Cernicharo^{α}, M. Etxaluze^{β}, D. Teyssier^{γ}, M. Gerin^{δ}, et al.

^aInstituto de Física Fundamental, Serrano 121-123, Madrid, Spain. e-mail: miriam.g.sm@csic.es_javier.r.goicoechea@csic.es

^βRAL Space, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, UK

^YTelespazio Vega UK Ltd. for ESA/ESAC, Urb. Villafranca del Castillo, Villanueva de la Cañada, 28692, Madrid, Spain

^δSorbonne Université, Observatoire de Paris, Université PSL, École Normale Supérieure, CNRS, LERMA, F-75014, Paris, France.

Abstract

Herschel made possible to study the properties of the, not so well constrained, warm molecular gas and dust inside the cavity of the circumnuclear disk (CND; gas in the inner central parsec of the Galaxy). In this communication, we summarize the results of a far-IR spectral scan toward Sgr A* taken with PACS and SPIRE-FTS spectrometers [1], and a velocity-resolved scan (~480-1250 GHz) and [CII] 158 µm line observations carried out with HIFI. The very high spectral resolution (R>10⁶) achieved by HIFI allowed us to resolve the velocity structure in the line-of-sight toward the Galactic Center and, for the first time at far-IR wavelengths, the intrinsic molecular emission from the central cavity. We report the presence of high positive-velocity emission (up to about +300 km s⁻¹) detected in the wings of the ^{12}CO J=5-4 to 10-9 lines [2]. This wing component is also seen in H₂O (1₁₀-1₀₁), a tracer of hot molecular gas; and in [CII] 158 µm, an univocal tracer of stellar FUV radiation (~6 - 13.6 eV). However, the high velocity wings are not detected in [CI] 492, 806 µm. Later, ALMA images have spatially resolved a collection of ¹²CO J=3-2 molecular "cloudlets" emitting at the same high positive velocities (v_{I SR}=+150 to +300 km s⁻¹) inside the central cavity [3]. This work emphasizes the strong synergy between far-IR observations from space and (sub)mm observations with ALMA. Our study adds more quantitative evidence to the existence of high-velocity, warm molecular gas (T_v≈400-2000 K) inside the cavity of the CND and close to Sgr A* (<1pc), the supermassive black hole of the Milky Way.

Sgr A* and the central cavity

- Galactic center: d ~ 8.5 kpc, hundred times closest galactic nuclei, high spatial resolution studies.

- Central Cavity: innermost pc of the Galaxy.

hosts a supermassive black hole, nuclear stellar cluster and streamers of ionized gas Unique environment for our understanding of galactic nuclei and galactic evolution. Intense UV fields and winds from massive stars

- Unique laboratory for ISM in extreme conditions:

Shocks Strong gravitational shears **Complicated orbital motions**

• The presence of molecular gas inside the cavity of the Circumnuclear Disk (CND) was originally not expected, because of the hostile conditions inside the cavity.

- Radio interfometers (VLA, ALMA): high-resolution spectral images of the molecular gas emission.

PACS+SPIRE spectra toward Sgr A* and the CND

The FIR spectrum toward Sgr A* -Strong emission:

+ [OIII], [OI], [CII], [NIII], and [CI] + high-J CO rotational lines: central cavity: up to J=24-23 CND: up to J=30-29

Herschel/HIFI toward Sgr A*: High Positive Velocity Wings (HPVW)

15 - C0 5 - 4

(K)

³CO 5-4

Top panel: SPIRE-FTS spectrum toward Sgr A*. Middle and bottom panels: PACS spectra toward Sgr A* and the CND. Flux density units are Jy spaxel⁻¹ for PACS and Jy beam⁻¹ for SPIRE.

Synergies between Herschel ALMA and IRAM 30m.

MINISTERIO DE CIENCIA E INNOVACIÓN

+ mid-J HCN and HCO⁺.

-Ground-state absorption lines: + light hydrides: HF, CH, NH + ions: OH^+ , H_2O^+ , CH^+ + rot. excited lines: H₂O, OH, H₃O⁺

Most of the luminosity emitted by molecular gas heated by shocks or illuminated by strong FUV fields is radiated in mid-J and high-J lines at sub-mm and FIR, inaccessible to ground-based telescopes.

Observations of the CO rot ladder are critical tools to determine the heating mechanisms and nature of the molecular gas in the GC.

HIFI multi-line detection toward Sgr A*.

Mid-J ¹²CO and ¹³CO lines observed with HIFI toward Sgr A*. The 2 red vertical lines (+120 and +270 km s⁻¹) -> HPVW emission.

10 - CO 6-5

K)

CO 6-5 W

200

Physical conditions in the central cavity

With HIFI we spectrally resolve the HPVW emission in several rotationally excited CO lines.

Emision comp.	T _{rot} [K]	N(¹² CO) [cm ⁻²]	r ²
main comp.	71±4	(6±1)x10 ¹⁷	0.986
HPVW	101±12	(1.9±0.4)x10 ¹⁶	0.946

HPVW comp: higher degree of excitation. Main comp: dominated by emission from the CND.

Observed CO intensities of the main and HPVW components toward Sgr A* translated to rotational population diagrams. The green othermal non-LTE model. The red and blue dashed curves show predictions of PDR models with $G_0 = 10^{4.9}$ and $\zeta_{CR} = 10^{-15} \text{ s}^{-1}$ (line intensities multiplied by 0.04)

CO J= 3-2 integrated intensity map of the inner 2' of the Galaxy obtained with the IRAM 30m telescope -> emission from the CND.

The square box: field of view observed by ALMA in CO J=3-2 -> high positive-velocity cloudlets inside the cavity [3].

The gray curves: representative orbits CND with 1.5 and 2.3 pc de-projected radii. The black, blue, and gray dashed circles centered at Sgr A* (black star) show HIFI's HPBWs at multiple frequencies (from $\sim 11''$ to $\sim 40''$).

References [1] Goicoechea, J. R., et al. 2013 ApJ 769 L13 [2] Goicoechea, J. R., et al. 2018 A&A 616 L1 [3] Goicoechea, J. R., et al. 2018 A&A 618 A35

CO rotational temperatures obtained from isothermal non-LTE models. . The blue-shaded area shows the estimated gas density of the high-velocity cloudlets detected by ALMA [3].

A more accurate solution require to observe and spectrally resolve higher J CO lines.

Conclusions

- In the central cavity (< 1 pc):

• Our observations add quantitative evidence to the existence of high-velocity, hot molecular cloudlets inside the cavity of the CND and close to Sgr A* (<1 pc).

- [CII] 158 μm wing emission: presence of FUV illumination.
- \circ The neutral atomic and molecular gas ($n_{\mu} \sim 10^{4-5} \text{ cm}^{-3}$): heated by UV photons ($G_0 > 10^4$)
- PDRs alone cannot drive the heating of the high positive velocity component. FUV-irradiated shocks likely dominate the heating of the hot molecular gas.
- Hot molecular gas mass: 10-60 M $_{\odot}$ in the inner 1.5 pc of the Galaxy (X(CO)=2.10⁻⁵ -> A_v≃0.5 mag)

Background image credit: ALMA (ESO/NAOJ/NRAO)/ J. R. Goicoechea (Instituto de Física Fundamental, CSIC, Spain)