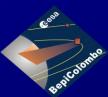
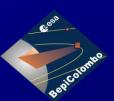
esa_{science} BepiColombo – Mission to Mercury

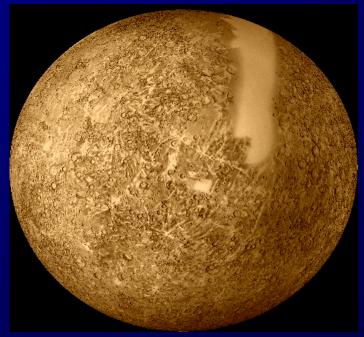


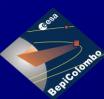
Mission

Ŀ


MPO Payload

Scientific Objectives

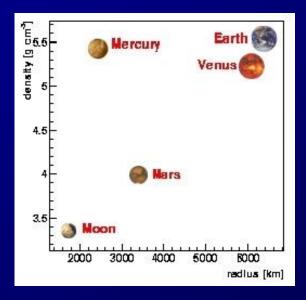



Origin and evolution of a planet close to the parent star

- Mercury as a planet:
 - form, interior, geology, composition
- Origin of Mercury's magnetic field
- Exosphere: composition and dynamics
- Magnetosphere:

structure, dynamics, interaction with planet

Relativity and Gravitational Physics



Interior:

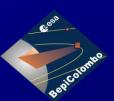
- mass, figure and moment of inertia
- chemistry of the surface
- surface heat flow

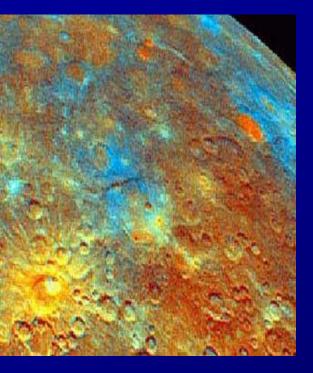


- moment of inertia factor C/MR²
 ratio of moment of inertia factor of solid part of planet
- to total total moment of inertia
- > second degree tidal Love number k
- > map magnetic field, separation of internal/external sources

Surface:

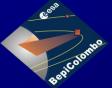
Map entire surface with a pixel size < 50 m
Characterize main features - pixel size < 10 m
Relate surface morphology to composition
Map global height distribution to 10 m accuracy on 100 km scale





Mineralogical and Elemental Composition:

- Global surface mapping
- global abundance of key elements
- > spatially resolved measurements of elemental abundances
- identify expected minerals
- > abundances of detected minerals
- correlate composition and features
- > search and identify signatures of unexpected species

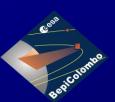


Exosphere:

Composition and vertical structure Search for noble gases, isotopes, molecules, atoms from crustal origin

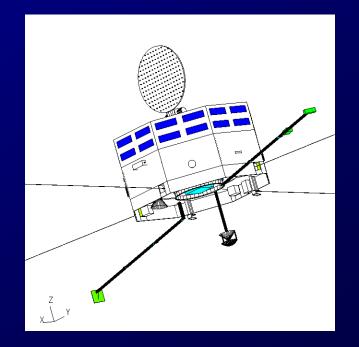
Dynamics

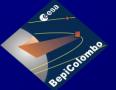
- day to night circulation
- active and inactive regions
- Surface release processes (e.g. regolith, meteotites, etc.)
- Search for Ionosphere
- Exosphere/Magnetosphere exchange and transport processes


Relativity and Gravitational Physics

- Test general relativity and alternative theories of gravity to a level better than 10⁻⁵ by measuring the time delay and Doppler shift of radio waves, and the precession of Mercury's perihelion
- Test the strong equivalence principle to a level better that 4 · 10⁻⁵
- Determine the gravitational oblateness of the Sun (J₂) to better than 10⁻⁸
- Set improved upper limits to the time variation of the gravitational "constant" G

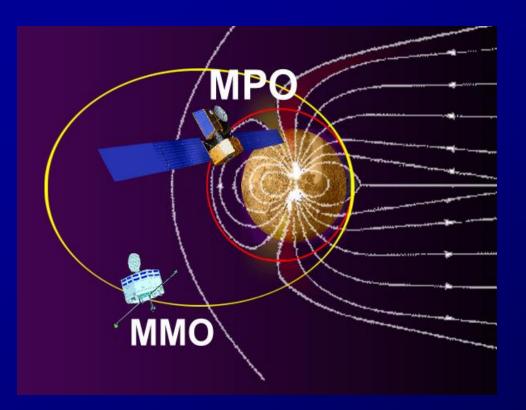
BepiColombo Elements





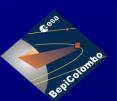
Mercury Planetary Orbiter

Mercury Magnetospheric Orbiter

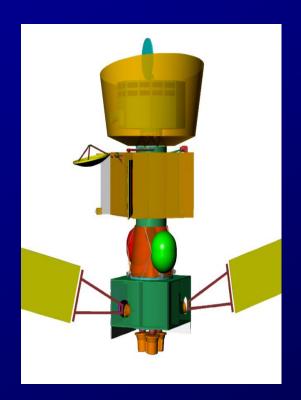


BepiColombo

MMO & MPO on dedicated orbits



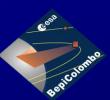
- MMO orbit optimized for study of magnetosphere
- MPO orbit optimized for study of planet itself
- High-accuracy measurements of interior structure
- Full coverage of planet surface at high resolution
- Optimal coverage of polar area
- Resolve ambiguities
 - exosphere
 - magnetosphere
 - magnetic field



BepiColombo Mission Scenario

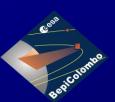
Launch on Soyuz 2-1B/Fregat-M (13 April 2012) Solar Electric Propulsion Chemical Propulsion Arrival: 4 April 2017

MMO MPO CPM SEPM



Launch into high elliptical orbit Interplanetary cruise to Mercury Lunar fly-by and one-year Earth-to-Earth gravity assist 2 Venus and 2 Mercury gravity assists Intermediate Velocity Increment maneuvers by SEP

Low-thrust cruise adopted as baseline:


- Lower installed power mass for SEP
- Longer thrust arcs (almost constant thrusting after Venus flybys)

The MPO Payload

MPO Reference Payload

High Resolution Colour CameraStereo CameraLimb Pointing Camera

Vis-Near-IR Mapping Spectrom. TIR Map. Spectrom/Radiometer X-ray Spectrom/Solar Monitor γ-Ray Neutron Spectrometer

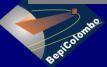
Ultraviolet Spectrometer — Neutral & Ion Particle Analyser

Laser Altimeter Radio Science Experiment Magnetometer

MMO Model Payload

Surface

Morphology Topography Composition Temperature


Interior *←*

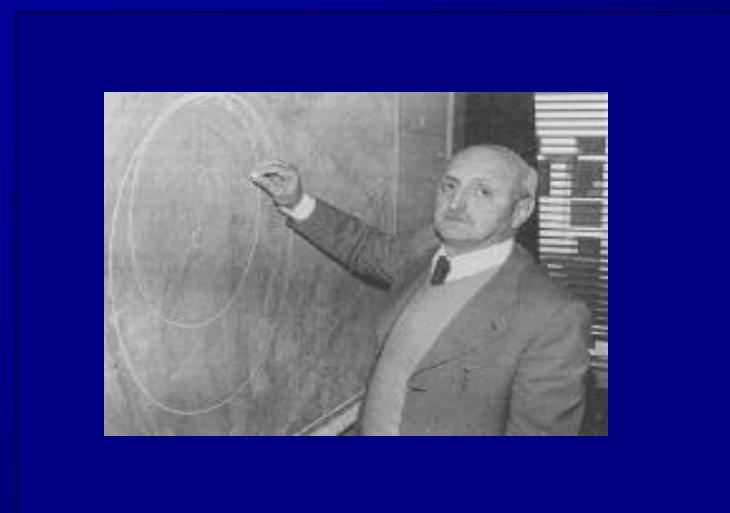
State of Core Core/Mantle Composition Magnetic Field

Exosphere <

Composition Dynamics Surface Release Source/Sink Balance

Magnetosphere Composition Interactions

MPO Payload Selection by SPC (Nov. 2004) Cesa_science


	BELA	Laser Altimeter	N. Thomas / T. Spohn
	ISA	Radio Science Accelerometer	V. Iafolla
	MERMAG	Magnetometer	A. Balogh
	MERTIS	IR Spectrometer	E.K. Jessberger
	MGNS or	Gamma Ray and	I. Mitrofanov
	MANGA	Neutron Spectrometer	C. d'Uston
	MIXS / SIXS	X-ray Spectrometer Solar Monitor	S. Dunkin J. Houvelin
	MORE	Radio Science Ka-band Transponder	L. Iess
	PHEBUS	UV Spectrometer	E. Chassefiere
	SERENA (Elena, MIPA, PICAM, Strofio)	Neutral Particle Analyser/ Ion Spectrometers	S. Orsini
30	SIMBIO-SYS	High Res.+ Stereo Cameras	E. Flamini

High Res.+ Stereo Cameras visual and NIR Spectrometer

(HIRC, STC, VIHI)

Benicolom

