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ABSTRACT

The possibility of the parallel acquisition of spectral data
alongside the proposed astrometric capabilities of a GAIA
type mission will present considerable data analysis prob-
lems. To demonstrate one method to handle a large spec-
tral data set, we present an investigation into spectral
analysis for the 2dF Galaxy Redshift Survey, which is due
to begin this year, utilizing the unique 2dF fibre optic sys-
tem in conjunction with the Anglo- Australian Telescope.
Over the timescale of the project, a library of 250000
galaxy spectra will be produced. To assess the underly-
ing astrophysics involved in the formation of the spectra,
an automatic system is required to spectrally classify the
galaxies. We have investigated the use of a Neural Net-
work for such a task, initially for finding the morphology
of the galaxies. We present examples of spectral clas-
sification using simulated galaxy spectra, from which a
measure of the success of the classification method can
be derived. We find that at V' = 19.5 mag over 85% of
the galaxies are correctly classified into one of five mor-
phological types.
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1. INTRODUCTION

With the advent of large astrophysical surveys, (eg. 2dF,
Sloan Digital Sky Survey, GAIA) the quantity of spec-
troscopic data will grow at a rapid pace. Traditionally,
experts have analyzed and classified spectra, but this
method is both time consuming and subjective. Ideally
an automated method is required to firstly reproduce con-
sistently the classification of an expert and secondly to
look for new trends in the data which could point to-
wards processes of astrophysical interest. Previous inves-
tigations into spectral analysis have been conducted for
the classification of QSO spectra (Francis et al. 1992),
stellar spectra (von-Hippel et al. 1994), and galaxy spec-
tra (Sodré & Cuevas 1994 and Connolly et al. 1994).

2. THE PROPOSED 2dF GALAXY SURVEY

The 2dF instrument (see Taylor 1994) consists of a new
top-end ring for the Anglo-Australian Telescope, incorpo-
rating a prime focus corrector lens to give a 2-degree field.

A robotic system is used to position 400 fibres across the
field, such that the light from the target objects can be
sent to two separate spectrographs. In this manner about
400 spectra can be obtained in one observation. The pro-
posed 2dF Galaxy Redshift Survey will attempt to mea-
sure 250000 galaxy redshifts to b; = 19.7, principally
for the investigation of large scale structure. Addition-
ally the spectra should produce a good homogeneous data
set for spectral analysis, allowing investigations into the
distribution of galaxies of varying spectral morphology.

3. SIMULATIONS OF SPECTRA

The Spectrophotometric Atlas of Galaxies (Kennicutt
1991) provides a source of high quality spectra for low
redshift galaxies, with morphological classifications. We
have taken 38 of these spectra for a range of elliptical and
spiral galaxies and shifted them to zero redshift. By con-
sidering a sky spectrum and the response function for the
2dF we have simulated spectra for objects in the magni-
tude range V' = 19.0 to V = 22.5 mag with exposure
times of 30 minutes. We have also included a sky sub-
traction error so that each simulated galaxy spectrum
contains between -5 and +5 percent of the sky spectrum.
Twenty such simulations, with different random seeds,
provides a total data set of 760 spectra at each magni-
tude.

4. PRINCIPAL COMPONENT ANALYSIS

The technique of Principal Component Analysis can be
used to reduce the dimensionality of a set of data (see
Murtagh & Heck 1987 for a full description). If the spec-
trum from a galaxy is represented by the flux at N wave-
lengths, then the spectrum can be considered as a point
in an N dimensional space, with the axes consisting of
the fluxes at the different wavelengths. Many such spec-
tra then form clouds of points in the space. Principal
Component Analysis finds the vectors in the space along
which the data varies most significantly. These vectors
are called the Principal Components with the first Prin-
cipal Component being that which encompasses the most
variance in the data. In this way, it is often found that
a large amount of the information in the data can be re-
tained by projecting the spectra onto a small number of
Principal Components. The simulated spectra can then
be projected onto a set of new axes being the principal
components determined from the original 38 spectra. It is
found that a spectrum can be well reconstructed from the



projections onto only a small number of principal compo-
nents (for example the first eight), and when noisy spectra
are being considered it is advantageous to limit the num-
ber of components used, since further projections merely
reconstruct the noise. For this reason we retain the pro-
jections onto the first eight Principal Components, since
for the noise levels we are using, this leads to a minimiza-
tion in the reconstruction error. Fig. 1 shows a galaxy
spectrum reconstructed with just eight Principal Compo-
nents. Fig. 2 shows the same spectrum, with noise added,
and its reconstruction from eight Principal Components,
indicating how the noise can be reduced.

Table 1 contains the values of this output type for each
morphology. The output Type is in the range 0 to 1, since
the net considers the galaxies as forming a continuous set.

5. THE NEURAL NET APPROACH

An artificial neural net code is used to classify the spec-
tra. More detailed descriptions of the use of neural nets
in astronomy appear in other papers (Hertz et al. 1991,
Lahav 1994, Naim et al. 1995). The net we have used
has the structure of 8 input nodes, 5 hidden nodes, and
one output node. In this case the single output node is
used to reflect the spectral morphology of the spectrum
being analyzed. The neural net is then trained on 2/3
of the galaxies. This procedure involves a quasi-newton
minimization routine (see Hertz et al. 1991), by which
the individual weights for the net are varied to minimize
the error in the output type. After repeatedly submitting
the training set of spectra to the neural net, it is found
that the error in the output converges and the training
can be considered complete. The remaining 1/3 of the
spectra are then presented, and the output type recorded
for each spectrum.

6. RESULTS

To assess the performance of the net, the output is binned
into the nearest class as defined in table 1. A success rate,
given by the percentage of galaxies placed into the correct
class, can then be inferred. A much broader classification
can also be investigated by performing a two class bin-
ning to classify the galaxies as either ‘elliptical’ or ‘spiral’.
This entire procedure can be repeated for a data set of
galaxies at different magnitudes and the percentage rates
plotted against magnitude. Another indication of perfor-
mance is given by the standard deviation of the output
type about the actual type for the galaxies. This gives a
true indication of the net performance without the need
for artificially binning the results. These results can be
seen in Fig. 3. Another interesting procedure, to high-
light where misclassifications are taking place, is to form
a matrix of the real class against the output class from the
neural net. It is found that even at V = 21 mag, most of
the galaxies have still been classified to within one class
(using the five classes defined in Table 1) of their actual
morphology.

7. CONCLUSIONS

This investigation indicates that it is feasible to use a neu-
ral net to classify the spectra of galaxies and it is clear to

see that such methods can also be used to classify stellar
spectra, such as those obtained by parallel spectral obser-
vations alongside a GAIA type mission. Such a mission
would require automated classification methods and this
investigation shows that Neural Nets can handle noisy
data with additional sky subtraction errors. This analy-
sis also indicates that Principal Component Analysis can
be used to both compress data and to reduce noise.
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[ Morphology | Type |

E-S0 0.1
SB0-Sab | 0.3
Sb-Sbc | 0.5
Sc-Sd | 0.7
Sm/Im | 0.9

Table 1: Neural Net output for different morphologies

Figure 1: Galazy spectrum reconstruction from 8 Princi- Figure 2: Noisy Galazy Spectrum reconstruction from 8
pal Components. Principal Components.



Figure 3: Neural net performance. a) the percentage suc-
cess for classifying spectra at different magnitudes for 2
and 5 classification bins. b) The total standard deviation
about the correct classification.



