The search for the missing baryons

The answer, my friend, is blowing in the WHIM*

* Warm and Hot Intergalactic Medium

X. Barcons, IFCA, Spain

Theoretical ground

X. Barcons, IFCA, Spain

What is the Universe made of?

Supernovae Ia

The baryon content of the Universe

X. Barcons, IFCA, Spain

From the "dark" to the observable Universe

X. Barcons, IFCA, Spain

The missing baryons

- Big-bang nucleosynthesis
 + CMB predict Ω
 b=(4.6±0.4)%.
 - At z>2, most baryons reside in the Damped-Lyman α population, and Lyman α clouds
 - At z<2, there are very few Lyman α absorbers, and galaxies & clusters only account for (2.5±0.3)%. Almost 50% of the baryons are missing at low z.

Table 1 Census of baryons in the high-and low-redshift Universe			
Inferred from	$\Omega_{\rm b}$ (%) for $h_{70} = 1$		
BBN + D/H* CMB anisotropy	(4.4 ± 0.4) (4.6 ± 0.2)		
Observed at $z > 2$ in Lyman-α forest Observed at $z < 2$ in‡	>3.5		
Stars Hi+Hei+H ₂	(0.26 ± 0.08) (0.080 ± 0.016)		
X-ray gas in clusters Lyman-α forest Warm + warm–hot O vi	(0.21 ± 0.06) (1.34 ± 0.23) $(0.6^{+0.4}_{-0.3})$		
Total (at $z < 2$)§ Missing baryons (at $z < 2$)§	$ \begin{array}{c} (2.5^{+0.5}_{-0.4}) \\ (2.1^{+0.5}_{-0.4}) \end{array} $		

X. Barcons, IFCA, Spain

XMM-Newton: the next decade

Nicastro et al 2005

The Warm & Hot IGM

- Large fraction of baryons at T~10⁵-10⁷ K
- IGM hotter towards low redshift (baryons falling onto potential wells)
- Extra heating might be present due to star formation & AGNs

XMM-Newton: the next decade

X. Barcons, IFCA, Spain

Thermal history of WHIM

X. Barcons, IFCA, Spain

T and ion column density (Fang, Bryan & Canizares 2002)

 $N_i(0 \text{ VII}) > 10^{13} \text{ cm}^{-3}$

 $N(0 \text{ VII}) > 10^{14} \text{ cm}^{-8}$

 $N_i(0 \text{ VII}) > 10^{13} \text{ cm}^{-2}$

 $N(0 \text{ VII}) > 10^{16} \text{ cm}^{-6}$

 $N_{i}(0 \text{ VIII}) > 10^{12} \text{ cm}^{-2}$

 $N_{10} VIII) > 10^{14} cm^{-2}$

 $N_{\rm I}(0 \text{ VIII}) > 10^{13} \text{ cm}^{-3}$

 $N.(0 \text{ VIII}) > 10^{15} \text{ cm}^{-2}$

X. Barcons, IFCA, Spain

The distribution of absorbers

Detecting the WHIM in absorption

X. Barcons, IFCA, Spain

How to detect the WHIM?

- In emission:
 - Tenuous and extended
 - Need to fight the background
 - Large sky area coverage
- In absorption:
 - Needs a bright background source
 - Detection only along specific lines of sight

Absorption versus emission

Different parameters sampled:

Hot gas emissivity $L \propto n_{gas}^2 R^3$ Absorption equivalent width $EW \propto n_{gas} R$

Different dimming effect:

 $L \propto d_L(z)^{-2}$ EW $\propto (1+z)$

Absorption requires a bright background source behind. *Little cosmological dimming effect!!!*

X. Barcon

Sensitivity: equivalent width detection limit

Rule of thumb:

For a S/N>10 spectrum, sampled to \sim 2-3 channels per resolution element, narrow absorption lines can be detected with an equivalent width as small as a fraction of a channel width.

Need for:Large collecting areaHigh spectral resolution

X. Barcons, IFCA, Spain

High-dispersion spectroscopy

XMM-Newton (RGS):

- •Effective area @ 20 Ang: 100 cm²
- •Angular resolution: 15" HEW
- •Spectral resolution @ 20 Ang(1st order): 280

Higher S/N

on: the

Chandra:

- •Effective area @ 20 Ang: 20 cm²
- •Angular resolution: 0.5" HEW
- •Spectral resolution @ 20 Ang (1st order): 300

(Higher) spectral resolution

Spectral resolution matters!

Early detection of the WHIM associated to the Local Group

Detection of the local WHIM

Rasmussen et al 2003

Nicastr, greta, alpzip02

Have intervening WHIM absorbers been detected?

X. Barcons, IFCA, Spain

The controversy around Mrk 421

- Detection of two WHIM absorbers with Chandra/LETGS:
 - Nicastro et al 2005, ApJ, 629, 700
 - Nicastro et al 2005, Nature, 433, 495
- XMM-Newton (437 ks) unable to confirm or discard these absorbers
 - Williams et al 2006, ApJ, 642, L95
- XMM-Newton (955 ks) <u>rejects</u> the presence of these absorbers
 - Rasmussen et al 2007, ApJ, 656, 129

X. Barcons, IFCA, Spain

Two WHIM absorbers towards Mrk 421 with *Chandra* LETGS

XMM-Newton confirmation?

Williams et al 2006

"Despite the long exposure time neither of the two intervening absorption systems is seen, though the upper limits derived are consistent with the Chandra equivalent width measurements."

437 ks exposure

Line	$\stackrel{\lambda^{\mathrm{a}}}{\mathrm{\AA}}$	z^{a}	$W_{\lambda,\mathrm{N05a}^{\mathbf{a}}}$ mÅ	$W_{\lambda,\mathrm{R1}}^{\mathrm{b}}$ mÅ	${W_{\lambda,\mathrm{R2}}}^\mathrm{b}$ mÅ	$\begin{array}{c} W_{\lambda,\mathrm{R1+R2}^{\mathrm{b}}} \\ \mathrm{m}\mathring{\mathrm{A}} \end{array}$
$\mathrm{Ne}\:\mathrm{IX}_{K\alpha}$	13.80 ± 0.02	0.026 ± 0.001	< 1.5	< 5.2	< 1.9	< 2.9
$O VII_{K\beta}$	19.11 ± 0.02	0.026 ± 0.001	< 1.8	< 2.5	< 2.1	< 1.5
O VIII _{Kα}	19.18 ± 0.02	0.011 ± 0.001	< 4.1	< 7.6	< 5.8	< 4.1
O VIII $_{K\alpha}$	19.48 ± 0.02	0.027 ± 0.001	< 1.8		< 3.9	
$O VII_{K\alpha}$	21.85 ± 0.02	0.011 ± 0.001	$3.0^{+0.9}_{-0.8}$			
O VII _{Kα}	22.20 ± 0.02	0.028 ± 0.011	2.2 ± 0.8	< 3.9		
N VII $_{K\alpha}$	25.04 ± 0.02	0.010 ± 0.001	1.8 ± 0.9	< 3.0	< 6.0	< 4.4
N VII $_{K\alpha}$	25.44 ± 0.02	0.027 ± 0.001	3.4 ± 1.1	< 4.3	< 4.2	< 3.5
N $\operatorname{VI}_{K\alpha}$	29.54 ± 0.02	0.026 ± 0.001	3.6 ± 1.2	< 3.8	< 8.7	< 3.4
$\mathrm{C}\mathrm{VI}_{Klpha}$	34.69 ± 0.02	0.028 ± 0.001	2.4 ± 1.3	< 5.5	< 5.2	< 4.2

"This appears to result from (1) the <u>larger</u> <u>number of narrow</u> <u>instrumental features</u> caused by bad detector columns,

(2) the <u>degraded</u> <u>resolution</u> of XMM/RGS as compared to the Chandra/LETG, and (3) <u>fixed pattern noise</u> at & 29Å.

The non-detection of the WHIM absorbers by XMM is thus fully consistent with the Chandra measurement."

Absorbers rejected by al 2007 XMM-Newton?

Rasmussen et al 2007

955 ks of data

Careful data reduction & alaysis

Localized gain anomalies

TABLE 3

- Transient, high duty-cycle pixel reads
- Cross-talk pixels-pickup of synchronously sampled analog signal of high dark current pixels
- Changes in source spectrum in the presence of finite spacecraft drift

	J	JOINT FITTING RESULTS AND LINE DETECTION LIMITS FOR DATA			
Feature	$\lambda_{\rm meas}{}^{\rm a}$	$\Delta \lambda^{a}$	ID ^b	Z	W_{λ}^{a}
1 2 3	21.598 22.023 22.300	±3 ±10 ±17	0 vii 0 vi (0 vii)	$ = 0 \\ 0.0003 \pm 0.0005 \\ 0.0325 \pm 0.0008 $	$13.1^{+1.0}_{-1.0} \\ 3.3^{+1.3}_{-1.3} \\ 2.6^{+1.3}_{-1.3}$
				Nondetections	
	$\lambda_{ ext{input}}^{e}$	$\Delta \lambda^{e}$	$ID^{\mathfrak{b}}$	z ^e	W^{a}_λ
1 2 3	21.85 22.20 22.32	$\pm 20 \\ \pm 20 \\ \pm 20$	(O VII) (O VII) (O VII)	$\begin{array}{c} 0.011\substack{+0.001\\-0.001}\\ 0.028\substack{+0.001\\-0.001}\\ 0.033\substack{+0.001\\-0.001}\end{array}$	$0^{+1.3}_{-1.4} \\ 0^{+1.4}_{-1.3} \\ 0^{+1.0}_{-1.7}$

"The deep continuum spectrum of Mrk 421 is well enough understood that it allows us to detect real absorption lines of equivalent width >1.9 mÅ with 99% confidence. "

X. Barcons, IFCA, Spain

XMM-Newton: the next decade

Rasmussen et al (2006) conclude:

- The non-detection of intervening absorption (...) is probably not surprising.
- The a priori probability, as predicted by recent cosmological gas dynamics simulations, of having an intervening filament with a column density that is (...) detectable with the current instrumentation, is relatively small. For $Z = 0.1 Z_{\odot}$, out to z(Mrk 421)= is 0.05-0.2 for Log(Ni) > 15.0 and 14.6.
- The most uncertain parameter in these calculations is the absolute oxygen abundance, which can currently not be calculated with confidence from first principles.
- The detection of the "missing baryons" remains a challenge, best addressed with higher resolution, higher sensitivity spectrometers.

What can XMM-Newton do regarding the WHIM?

X. Barcons, IFCA, Spain

Boundary conditions

- "<u>Serendipitous</u>" search (do not target WHIM associated to groups/clusters)
- Need to go for a <u>secure</u> detection, i.e., expect a significant number of absorbers (span a significant Δz)
- Metal abundance <u>unpredictable</u> (nothing can be done about it)

Expected # of absorbers

X. Barcons, IFCA, Spain

Need to cover ∆z~1 with >10,000 counts/50 mÅ

(similar quality to a 500 ks spectrum of Mrk 421)

X. Barcons, IFCA, Spain

Is that feasible with XMM-Newton?

Possible single target searches

Source	Redshift	Exp Time (Ms)	# absorb
3C 279	0.53	1.5	2.9
Pks 0637	0.65	5	3.5
3C 454.3	0.86	5	4.3
3C 380	0.69	10	3.7

X. Barcons, IFCA, Spain

Can XMM-Newton detect intervening WHIM filaments?

- Extremely interesting topic.
- Extremely challenging for current instrumentation, but feasible.
- Metallicity always a concern