The census of highly obscured SMBH: X-ray observations of extreme Spitzer AGNs

Fabrizio Fiore

&

M. Brusa, A. Comastri, C. Feruglio, A. Fontana, A. Grazian, F. La Franca, P. Santini, E. Piconcelli, S. Puccetti, G. Zamorani and many others

Co-evolution of galaxies and SMBH

Two seminal results:

- The discovery of SMBH in the most local bulges; tight correlation between M_{BH} and bulge properties.
- The BH mass density obtained integrating the AGN L.-F. and the CXB ~ that obtained from local bulges

 most BH mass accreted during luminous AGN phases!
 Most bulges passed a phase of activity:
 Complete SMBH census, full understanding of AGN evolution and AGN feedback are key ingredients to understand galaxy evolution

GOAL

AGN Bolometric Luminosity function

Complete SMBH census

 Strong constraints to models for the formation and evolution of structure in the Universe

Evidences for missing SMBH

10

While the CXB energy density provides a statistical estimate of SMBH growth, the lack, so far, of focusing instrument above 10 keV (where the CXB energy density peaks), frustrates our effort to obtain a comprehensive picture of the SMBH evolutionary properties.

Why multiwavelength surveys

X-ray surveys:

 very efficient in selecting unobscured and moderately obscured AGN

 Miss most highly obscured AGN

La Franca et al. 2005

2-10 keV AGN luminosity function models

LDDE with constant N_H distribution

La Franca et al. 2005

Fig. 2. Observed X-ray absorption distribution of the lowluminosity AGN (top panel), and high-luminosity AGN (bottom panel). The shaded part of each diagram shows the number of AGN with unknown $N_{\rm H}$. INTEGRAL survey ~ 100 AGN

Sazonov et al. 2006

Highly obscured

Mildly Compton thick

2-10 keV AGN luminosity function models

LDDE with variable absorbed AGN fraction La Franca et al. 2005

Feedback is effective in self-regulating accretion and SF, cold gas is left available

A working scenario

Galactic cold gas

Galactic cold gas available for accretion and obscuration increases at high z

large mass progenitors. Feedback is less effective, most gas is quickly converted in stars at high z. Menci hierarchical clustering model, Menci, Puccetti Fiore 2006 Paucity of Seyfert like sources @ z>1 is real? Or, is it, at least partly, a selection effect?
 Are we missing in Chandra and XMM surveys highly obscured (N_H×10²⁴ cm⁻²) AGN? Which are common in the local Universe...

Why multiwavelength surveys

IR surveys:

 AGNs highly obscured at optical and X-ray wavelengths shine in the MIR thanks to the reprocessing of the nuclear radiation by dust

IR surveys

 AGNs highly obscured at optical and X-ray wavelengths shine in the MIR thanks to the reprocessing of the nuclear radiation by dust

 Very difficult to isolate AGN from passive and star-forming galaxies (Lacy 2004, Barnby 2005, Stern 2005, Polletta 2006 and many others)

Why multiwavelength surveys
Use both X-ray and MIR surveys:

- Select unobscured and moderately obscured AGN in X-rays
- Add highly obscured AGNs selected in the MIR

 Simple approach: Differences are emphasized in a wide-band SED analysis

X-ray-MIR surveys

- CDFS-Goods MUSIC catalog (Grazian et al. 2006, Brusa, FF et al. 2007)
- Area 0.04 deg2
- 173 X-ray sources, 104 2-10 keV down to 3×10⁻¹⁶ cgs, 109 spectroscopic redshifts
- 1700 MIPS sources down to 40 μJy, 3.6mm detection down to 0.08 μJy
- Ultradeep Optical/NIR photometry, R~27.5, K~24
- ELAIS-S1 SWIRE/XMM/Chandra survey (Puccetti et al. 2006, Feruglio et al. 2006).
- Area 0.5 deg2
- 500 sources, 205 2-10 keV down to 3×10⁻¹⁵ cgs, half with spectroscopic redshifts.
- 2600 MIPS sources down to 100 μJy, 3.6mm detection down to 6 μJy
- Relatively deep Optical/NIR photometry, R~25, K~19
- In future we will add:
- COSMOS XMM/Chandra/Spitzer. Area 2 deg²
- CDFN-Goods. Area 0.04 deg2

MIR selection

Open symbols = unobscured AGN Filled symbols = optically obscured AGN ELAIS-S1 obs. AGN ELAIS-S1 24mm galaxies HELLAS2XMM

HELLAS2XMM GOODS 24mm galaxies

Fig.4. As Fig.2 for Abell2690#075. The bottom panel shows the zoom around a line tentatively identified as $H\alpha$ at z=2.13.

MIR AGNs

98 sources with F24/FR>1000 and R-K<3 Chandra ACIS 0.3-8 keV

94 sources with F24/FR>1000 and R-K>4.5 Chandra ACIS 0.3-8 keV

68 sources with F24/FR<100 and R-K>4.5 Chandra ACIS 0.3-8 keV

F24µm/FR >1000 R-K>4.5

94 sources with F24/FR>1000 and R-K>4.5 Chandra ACIS 0.3-1.5 keV

98 sources with F24/FR>1000 and R-K>4.5 Chandra ACIS 1.5-4 keV

F(0.3-1.5keV)~10⁻¹⁷ cgs

F(1.5-4keV)~10⁻¹⁷ cgs

F24µm/FR <100 R-K>4.5

68 sources with F24/FR<100 and R-K>4.5 Chandra ACIS 0.3-1.5 keV

68 sources with F24/FR<100 and R-K>4.5 Chandra ACIS 1.5-4 keV

F(0.3-1.5 keV)~2×10⁻¹⁷ cgs

$F(1.5-4 \text{ keV}) < 5 \times 10^{-18} \text{ cgs}$

F24µm/FR >1000 R-K>4.5

- 135 sources (8% of the MIPS sample)
- 18 detected by Chandra (9 2-10 keV band) 4 more visible in the image <LX>=43.45+/-0.24, <N_H>=22.9+/-0.8, <z>~2.1
- IogF(1.5-4keV) stacked sources=-17
- @z~2 logL_{obs}(2-8keV) stacked sources ~41.8
- log<LIR>~44.8 ==> logL(2-8keV) unabs.~43
- Difference implies logN_H~24

F24mm/FR <200 R-K>4.5

- 110 sources (7% of the MIPS sample)
- 29 detected by Chandra, 19 2-10 keV, <LX>=43.4+/-0.4
 <NH>=23.2+/-0.6, <z>~1.4
- <SFR-IR> ~ 18 Msun/yr
 <SFR-UV> ~13 Msun/yr
 <SFR-X>~20 Msun/yr

A new population of CT AGN

Density of Obscured AGNs

IR selected

2-10 keV selected

Is this the end of the story?

High F(24µm)/F(O), high R-K sources *A new population of CT AGN* But only on statistical ground!

CDFS truecolor 24µm(red), K(green), R(blue)

Simbol-X 10-40 keV CDFS simulation

1Msec CZT+ 0.5Msec SDD. Chandra sources + MIPS selected CT AGNs Blue contours = Chandra 0.3-8 keV

12 arcmin

Unveiling obscured accretion in the CDFS

24µm(red), K(green), R(blue)

Simbol-X simulations

Detect X-rays from CT AGNs at z~0.5-2 Confirm active nucleus in these galaxies Measure absorbing column density

Evolution of highly obscured AGNs Unbiased census of accreting SMBH up to the redshifts where galaxy formation peaks

High MIR/O SWIRE Sources

Large area (~50 deg²) with sensitive IR (Spitzer), NIR and optical data well suited for searching for type2 QSO

Small fraction covered with shallow X-ray observations below 10 keV

• ~ 30% of the high MIR/O sources with XMM/Chandra coverage are detected below 10 keV

Blue circles = XMM pointings; Red polygons = Chandra ACIS-I and ACIS-S pointings

How deep should we go?

How deep should we go? 50-60ks

SWIRE highly obscured QSOs
~100 SWIRE sources with F(24um)/F(R)>2000 & F(24um) > 2 mJy
~half with R-mag(3.6um)>4.5
small minority with sensitive X-ray data

Bright MIPS sources F(24um) > 4 mJywith faint optical counterparts (R>24)

Spitzer fields with X-ray data

•LH+SXDS+ES1+EN1+EN2+CDFS+COSMOS (~30deg²)
•F(24um)>2mJy & F(24um)/F(R)>2000 37 sources
•~20 sources with 2-10 keV data down to 5×10⁻¹⁵ cgs
•14 detections, 3 spectro. redshifts
•LH A4, A8, z=2.54, 2.31 logN_H~24 logLX~45.6 Weedman et al.2006

Spitzer fields with X-ray data

•ES1_67, ES1_123 z=0.689, 0.57 logN_H~23 logLX~43-43.5

Feruglio et al. 2007

Summary

- XMM & Chandra surveys can probe unobscured and moderately obscured accretion up to z=2-4
- INTEGRAL/Swift find CT AGN up to z~0.1
- Spitzer finds luminous CT AGN at z~0.5-2, ideal targets for:
- XMM & Chandra dedicated observations. They will unveil high luminosity, highly obscured (type 2) QSOs
- Herschel will further increase the band, so helping in separating AGN from normal galaxies and pushing toward higher z.
- All this will allow a precise determination of the evolution of the accretion in the Universe and a precise census of accreting SMBH.