

Statistics of relativistic broadened Fe K lines in AGN

I. de la Calle, A. L. Longinotti, M. Guainazzi, S. Bianchi and M. Dovčiak

X-ray Emission in Active Galactic Nuclei

X-ray Spectrum

Broad Iron Lines

Disk Dynamics

June 4-6, 2007

Fabian et al. 2000

Relativistic Fe Line

The broad Fe lines carry information about strong gravity, so they can be used as a diagnostics of the innermost regions of AGN:

Central supermassive black hole => potential to measure black hole spin and mass

Accretion disc => the shape of the line carries information on the dynamics of the accretion disk: diagnostic of accretion disc structure, like extension and ionisation state *e.g. Guainazzi et al. 2006*

Fraction of AGN with relativistically broadened lines is still largely unknown

How often relativistic broadening appears in AGN spectra?

Relativistic Line Profile Studies

Relativistic Fe Line

Sample Studies:

2) XMM-Newton data 104 AGN (Lockman

Hole, faint sources: $F=10^{-15}-10^{-13} \text{ ergs/s/cm}^2$):

EW~500 eV Streblyanska+ 05

3) XMM-Newton data 38 AGN (PG QSO): 3 significant broad line detections Jimenez-Bailon+ 05

4) XMM-Newton data 30 AGN (Bright Sy1) \approx 73% show broad K_{α} profiles Nandra+ 06

The Sample

Analysis

Observations

- 221 XMM-Newton target observations, corresponding to 157 different sources obtained as pointed observations by XMM-Newton (*public up to March 2007*)
- Exposure times range from 0.9ksec and 398ksec.

Analysis

- Homogeneous analysis of all sources with latest SAS version and calibration files.
- Multiple observations of the same source have been combined (21 sources).
- Only EPIC-pn data has been considered.

Spectral Analysis

- *Pre-analysis cut*: only source spectra with good statistics are fitted (>17 d.o.f).
- Spectra rebinned with 25 background subtracted cts/channel, and > 3 bins.
- Fit done in the 2 10 keV rest frame.
- The same model has been uniformly applied to the whole sample.

The Model

Analysis

$$e^{-\sigma_{ph}N_{H}} \times A(\Gamma, T, \xi) \times N [E^{-\Gamma} + C(\Gamma, E_{c}, \phi) + \sum_{i=1}^{5} G_{i} + R(\phi, \beta, a)]$$

Individual Source Detections

(Anna Lia Longinotti's poster)

Results

Detections

Results

SOURCE NAME	ТҮРЕ	Cts (2-10 keV)	$L_{X}(*)$	EW (eV)	σ
MCG-6-30-15	NLSY	13.92e+05	0.57	207.0	9.1
IZW1	NLQ	0.39e+05	4.76	1452.1	6.9
IC4329A	BLSY	9.12e+05	5.66	37.6	6.9
MCG-5-23-16	NCSY	8.85e+05	1.42	35.4	6.0
NGC3516	BLSY	2.81e+05	0.37	163.6	5.8
NGC3783	BLSY	9.44e+05	1.15	108.0	5.5
MRK766	NLSY	7.81e+05	0.62	148.8	5.2
AKN564	NLSY	1.90e+05	2.41	246.0	3.8
NGC4579	NCSY	0.08e+05	0.03	5557.6	3.4
PG1211+143	NLQ	0.17e+05	4.86	754.1	3.2
NGC4051	NLSY	2.04e+05	0.03	253.2	3.0
HE1143-1810	BLSY	0.71e+05	6.98	331.3	3.0

L1
$$31 L_X < 1$$

L2 $39 \ 1 \le L_X < 5$
L3 $33 \ 5 \le L_X < 15$
L4 $46 \ L_X \ge 15$

(*) L_x in 10⁴³ erg s⁻¹ (2 – 10 keV)

EW vs Luminosity, Inclination Angle and power-law index of emissivity

XMM-Newton: The Next Decade June 4-6, 2007

Results

Conclusions

Summary

Guainazzi+ 06

Relativistic broadened Fe K_{α} lines:

- are present in 25% of the sample, ~50% of well exposed sample
- are significantly more common in low luminosity AGN

This Work Relativistic broadened Fe K_a lines:

- are present in 8% of the sample, ~57% of well exposed sample
- no significant difference between different luminosity classes, but our stacked spectra are not dominated by well exposed sources (see Anna Lia Longinotti's poster)
- EW < 400 eV
- disk parameters are consistent with expectations ($\phi \sim 30^\circ$, $\beta \sim 3$)

Future Work

Summary

Sources with enough statistics $\geq 1.5 \times 10^5$ counts in the 2-10 keV band

By the end AO6:

10 X-ray unabsorbed AGN to complete the XMM-Newton coverage of an XSS flux limited sample.

Model

- Ionized reflection, more complex warm absorber

Physics

- Correlation of the EW with accretion rate and BH mass

Spectral Stacking

Analysis

To overcome the statistical limitation in the detectability of a broadened K_{α} profile on individual sources, the individual source spectrum can be stacked.

⊨nergy (kev)

(See A. L. Longinotti's poster)

Luminosity Distribution

Distribution of Luminosities

 L_x in 10⁴³ erg s⁻¹ (2 – 10 keV)

Results

