High spectral resolution observations of AGN

Jelle Kaastra SRON

Overview

- Importance of AGN outflows
- The zoo of AGN: characteristic examples of outflows observed with RGS
- Importance of reverberation studies
- The need for larger samples of high quality spectra
- Conclusions

1. Importance of AGN outflows

Important for:

- Growth of supermassive black holes
- Enrichment of the intergalactic medium
- Evolution of the host galaxy
- Cluster cooling flows
- Magnetisation of cluster and galactic gas
- AGN luminosity function

More about this in talk Arav

2. The zoo of AGN: lots of different BiRDs

Prototype Seyfert 2: NGC 1068

Kinkhabwala et al. 2002

- Strong emission lines and RRC from photoionised gas
- See the outflow in emission
- More about Seyfert 2 in talk Guainazzi

Seyfert 1: absorption spectra

IRAS 13349+2453: UTA of iron

Sako et al. 2001

- IRAS 13349+2453
- Broad absorption lines (σ_v=600 km/s)
- Lines show outflow 200 km/s
- No clear edges
- Strong UTA near 16-17 Å (2p-3d)

Complex absorber: NGC 5548

Steenbrugge et al. 2003

- Use column densities
 Fe ions from RGS,
 137 ks spectrum
- Measured N_{ion} as sum of separate ξ components
- Need at least 5 components

NGC 5548: continuous versus discrete column density distribution

Relativistic lines: MCG -6-30-15

Branduardi-Raymont et al. 2001; Sako et al. 2003

- Need to understand warm absorber in order to understand continuum and vice versa
- High spectral resolution only way to resolve this

Average redshift, N_H corrected RGS spectra (BiRD) Seyfert 1

for RGS Dat

BL Lac

3. Importance of reverberation studies

- Spherical shell:
- Kinetic luminosity $\sim \frac{1}{2} \Omega r N_H m_p v^3$
- $\Omega = O(\pi)$ from fraction of S1 with absorber
- V measured from spectrum
- N_H measured from spectrum
- r unknown

How to estimate R: reverberation

- If L increases for gas at fixed n and r, then $\xi = L/nr^2$ increases
- → change in ionization balance
- → column density changes
- → transmission changes
- Gas has finite ionization/recombination time t_r (density dependent as ~1/n)
- → measuring delayed response yields
 t_r→n→r

Reverberation: NGC 3783

RGS data (Behar et al. 2003): no change in
 Warm absorber → n<300 cm⁻³, r>10 pc.

Reverberation II: NGC 3783

EPIC data (Reeves et al. 2003): change in
 Warm absorber (larger columns) → n>10⁸ cm⁻³, r<0.02 pc.
 → What to make out of this?
 → Urgent need of more data!

4. The need for larger samples of high quality spectra

Large variety of AGN:

- warm absorber yes/no
- Relativistic lines yes/no
- "Normal" broad lines
- Dust yes/no
- Luminosity differences
- Orientation angles
- Need sizeable sample of good spectra to understand the population

Tool: the oxygen region

- Oxygen region: why important?
- Good diagnostic region:
- For almost any ξ there is a diagnostic ion
- Oxygen is the most abundant metal
- RGS best instrument for oxygen studies

Magic equation

- @ oxygen, $N_{H} = 10^{20} \text{ cm}^{-2} \leftarrow \rightarrow \text{tau} = 0.1$
- Eff area RGS @ 23 Å ≈ 40 cm² (1 RGS)
- FWHM RGS @ 23 Å ≈ 0.07 Å
- S/N=10 per FWHM (minimum requirement for good spectrum) reached at 100 counts/FWHM

$$t_{\exp}(ks) = \frac{114}{F_{2-10keV}} e^{0.1N_{20}}$$

$$F_{2-10keV} \text{ in } 10^{-14} \text{ W or } 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1}$$

Brightest 15 Seyfert 1-like

Flux	t _{exp} (ks)	S/N	Flux	t _{exp} (ks)	S/N
9.0	182	5	4.5	452	39
8.9	149	9	4.3	60	20
8.8	559	50	4.1	46	8
6.5	103	0	4.1	154	22
5.5	58	0	3.8	22	6
4.6	38	3	3.6	0	0
4.6	233	16	3.5	77	13
4.6	132	22	Flux in 2-10 keV band, 10-14 W (10-11 cgs		
			S/N at 23 Å for FWHM of RGS		

1. NGC 4151 (t=182 ks, S/N=5): more S2-like

2. IC 4329A (t=149 ks, S/N=9): intrinsic absorption

. 3C 273 (t=559 ks, S/N=50): at most weak spectral features

4. NGC 5506 (t=103 ks, S/N=0): misclassification (S2)

9. MCG -6-30-15 (t=452 ks, S/N=39): as it should be...

Brightest 52-66 Seyfert 1-like

Flux	t _{exp} (ks)	S/N	Flux	t _{exp} (ks)	S/N
1.5	0	0	1.1	13	4
1.5	0	0	1.1	14	2
1.4	8	2	1.0	0	0
1.4	572	30,166	1.0	0	0
1.3	16	3 M.	1.0	0	0
1.2	0	0	1.0	0	0
1.2	163	15 A051	1.0	22	2
1.2	12	4 NG2	Flux in 2-10 keV band, 10-14 W (10-11 cgs		
			S/N at 23 Å for FWHM of RGS		

Conclusion: Legacy program XMM-Newton

- Reverberation: 3 or 4 well sampled sources, each about 1 Ms
- Sample S1-like sources: ~50 brightest, at 100-130 ks on average each, about 5 Ms

Mass outflow rate

(Blustin et al. 2005)

- Assumption 1: solid angle 1.6 sr
- Assumption 2: momentum outflow = absorbed momentum radiation
- Outflowing mass comparable to accreted mass

