Normal galaxies outside the local Universe

Antonis Georgakakis Imperial College

Outline

- Study of galaxies at X-ray wavelengths important
- State of the game + problems/issues
- Further progress requires wide area Xray survey (Sloan Digital Sky Survey)
- Science demonstration using 2XMMp and SDSS

Galaxies at X-rays: it does worth it!

- Dominant population in future X-ray surveys (e.g. XEUS)
- Star-formation indicator (dust-free)
- X-ray binaries and evolution
- Hot gas and metal enrichment

Why study galaxies

- Dominant population below the limit of current surveys (e.g. XEUS)
- At $f_X \sim 10^{-18}$ erg/s/cm² - 30,000 galaxies/deg²
 - Mean redshift <z>~1.5

X-ray evolution of star-forming galaxies

- X-ray binaries:
 - low mass: long timescales
 - high mass: fast evolution
- X-ray evolution of starbursts different compared to other wavebands
 - time lag between the peaks of SF and X-ray luminosity
- Attempts to constrain galaxy XLF as a function of redshift
 - Chandra Deep Fields identify galaxies to z~1
 - Chandra & XMM wide-angle shallow surveys find galaxies at z~0.1

Norman et al. 2005; Georgantopoulos et al. 2005; Georgakakis et al. 2006

X-ray emission as star-formation indicator

- Late type galaxies: X-ray emission SFR indicator.
- Almost independent of dust extinction (>2keV)
- Ranalli et al. 2003: $L_X \propto L_{IR}$ over 4dex in L_{IR}
- Problems:
 - relatively small number of galaxies
 - Does the relation remain linear at low SFRs?

Metal enrichment

- Hot gas of clusters/groups rich in metals, i.e. not primordial
- Gas is processed in galaxies before transported to the inter-galactic medium:
 - SN explosions
 - Gas stripping
 - AGN jets
 - Galaxy interactions

Metal enrichment via gas stripping

- Early-type galaxies in clusters are X-ray faint for their L_B.
- X-ray emission dominated by binary stars
- Galaxy hot gas is stripped to the intergalactic medium
- We need to study of the Xray properties of galaxies in a range of environments.

See also Hornschemeier et al. 2006

Problems

- Selection of galaxies
 - Contamination from AGN
 - Requires good spectroscopy and/or multiwavelength data
- Galaxy samples are still small (~100)
 - Luminosity function
 - Environmental studies

Galaxy X-ray Luminosity Function

- Local X-ray Luminosity Function, <z>~0.1
- Data: Needles in Haystack Survey + 1XMM + Chandra Deep Fields (~15deg²)

Galaxy X-ray Luminosity Function: indirect estimation

Galaxy X-ray Luminosity Function

- Local X-ray Luminosity Function, <z>~0.1
- Data: Needles in Haystack Survey + 1XMM + Chandra Deep Fields (~15deg²)

Galaxy X-ray Luminosity Function: selection effects

See also Tzanavaris et al. 2006

Galaxy X-ray Luminosity Function: faint-end slope

Sloan Digital Sky Survey

- DR5: 8000deg²
 - spectroscopy
 - photometry
- Multi-wavelength data
 - FIRST (1.4GHz)
 - UKIDSS (YJHK)
 - AKARI (1.7-180μm)
 - X-rays missing!
- Advanced products
 - star-formation rates
 - AGN/star-formation diagnostic diagrams
 - local density measures

Match 2XMMp with the SDSS:

- 0.5-4.5keV (LH>20)
- 1.3×10⁴ sources over
 ~50deg²
- 0.9×10⁴ optical IDs
- 200 SDSS spectra (~9deg²)

Match 2XMMp with the SDSS:

- 0.5-4.5keV (LH>20)
- 1.3×10⁴ sources over
 ~50deg²
- 0.9×10⁴ optical IDs
- 200 SDSS spectra (~9deg²)

- Total of 48 galaxies
- 20 star-forming
 - mostly $\log(f_X/f_R) < -2$
- 28 early-type
 - $L_X \sim 10^{40} 10^{43} \text{erg/s}$
 - $-50\% \log(f_X/f_R) > -2$

Future

Important science to be done with galaxies

- X-ray luminosity function at z~0.1
 - interpretation of deeper surveys
 - evolution studies
- X-ray properties as a function of environment
 - Use SDSS local galaxy density measure
 - X-ray detections + stacking
- L_{χ} /SFR relation calibration
 - Use SFR of individual galaxies from the SDSS

Future

- Important science to be done with galaxies
- Wide medium-deep XMM survey:
 - 15ks, $f_{\chi} \sim 5 \times 10^{-15} \text{erg/s/cm}^2$
 - ~100deg²
- NOT very-wide shallow:
 - $\sim 1000 deg^2$
 - $f_{\chi} \sim 10^{-13} \text{erg/s/cm}^2$

Galaxies at X-rays: does it worth it?

- X-rays only a small fraction of the energy output of galaxies
- e.g. Arp 220:
 - most of the energy at the infrared
 - X-rays: 5dex lower flux!
- Unlike AGN where X-rays are a major component

Galaxy X-ray Luminosity Function

Difference between the two XLF estimates:

- *L_X/L_B* relation more complex than power-law
- At a given L_B the distribution of L_X not Normal (e.g. low- L_X tail).

Why study galaxies

- Dominant population below the limit of current surveys
- At *f*_X~10⁻¹⁸erg/s/cm²
 30,000 galaxies/deg²
 - Mean redshift <z>~1.5

1Ms XEUS simulation of the UDF (T. Dwelly)

Galaxies: Imperial College AGN: Bologna

Galaxy X-ray Luminosity Function

Difference between the two XLF estimates:

- L_X/L_B relation more complex than power-law
- At a given L_B the distribution of L_X not Normal (e.g. low- L_X tail).