THE MODIFIED TIMING MODE -Observing Bright Sources With XMM-Newton

Sonja Fritz¹ Jörn Wilms², Eckhard Kendziorra¹, Ingo Kreykenbohm^{1,4}, Katja Pottschmidt³, Mike A. Nowak⁶, Markus G. Kirsch⁵, Andrea Santangelo¹

¹ Institut für Astronomie und Astrophysik, Universität Tübingen, Germany
 ²Dr. Remeis Sternwarte, Bamberg, Germany
 ³Center for Astrophysics and Space Sciences, University of California at San Diego, USA
 ⁴ INTEGRAL Science Data Centre, Versoix, Switzerland
 ⁵European Space Astronomy Centre (ESA), Madrid, Spain
 ⁶MIT, Center for Space Research, Cambridge MA, USA

Madrid, June 6, 2007

The XMM Modified Timing Mode

Madrid, June 6, 2007

THE XMM-NEWTON MODIFIED TIMING MODE

S. Fritz, IAAT

The XMM Modified Timing Mode

< <p>I > <</p> ÷

∍ Madrid, June 6, 2007

1

WHY BRIGHT SOURCES?

Bright (>100 mCrab) sources are crucial for our detailed understanding of accretion as a physical process.

- test relativity (variable and broad Fe Kα lines)
- soft X-ray spectroscopy ⇒ stellar winds, absorption dips,...
- Accretion geometry: Comptonization versus jet emission, reflection,...
- strong short term variability out to >100 Hz
 (30% rms → produced close to compact object?)
- variability on all timescales (M variations? cannot study with AGN at all!)

< 🗆 🕨 🗵

WHY BRIGHT SOURCES?

Bright (>100 mCrab) sources are crucial for our detailed understanding of accretion as a physical process.

What is available? - Look at XMM UHB:

	Time res. I	_ive time [%]	Max. cps i	nCrab
MOS				
Full frame (600×600)	2.6 s	100.0	0.70	0.24
Large window (300×300)	900 ms	99.5	1.8	0.6
Small window (100×100)	300 ms	97.5	5	1.7
Timing uncompressed (100×600)	1.5 ms	100.0	100	35
pn				
Full frame (376×384)	73.4 ms	99.9	6	0.7
Ext. full frame (376×384)	200 ms	100.0	2	0.25
Large window (198×384)	48 ms	94.9	10	1.1
Small window (63×64)	6 ms	71.0	100	11
Timing (64×200)	0.03 ms	99.5	800	85
Burst (64×180)	7 <i>μ</i> s	3.0	60000	6300

< ロ > < 何

Sac

What is available? - Look at XMM UHB:

	Time res.	Live time [%]	Max. cps ı	nCrab
MOS				
Full frame (600×600)	2.6 s	100.0	0.70	0.24
Large window (300×300)	900 ms	99.5	1.8	0.6
Small window (100×100)	300 ms	97.5	5	1.7
Timing uncompressed (100×600)	1.5 ms	100.0	100	35
pn				
Full frame (376×384)	73.4 ms	99.9	6	0.7
Ext. full frame (376×384)	200 ms	100.0	2	0.25
Large window (198×384)	48 ms	94.9	10	1.1
Small window (63×64)	6 ms	71.0	100	11
Timing (64×200)	0.03 ms	99.5	800	85
Burst (64×180)	7 <i>μ</i> s	3.0	60000	6300

< D > < A >

Sac

THE XMM-Newton Modified Timing Mode

IMPORTANT TO NOTE

cps limit of EPIC-pn timing mode due to *telemetry*, NOT due to camera capabilities!

Therefore:

- Give EPIC-pn as much telemetry as possible ⇒ switch off EPIC-MOS
- Only transmit those events that are most interesting for spectral-temporal studies
 - \implies disregard soft photons

MODIFIED TIMING MODE:

increase lower energy threshold in EPIC-pn from 200 eV to 2.8 keV

4)4(4

MODIFIED TIMING MODE - CALIBRATION

Single/double fraction changes as low energy split partners disappear

- \rightarrow energy redistribution changes
- → Timing mode requires recalibration!

< n

Vela X-1: Standard timing mode versus simulated modified timing mode, using STANDARD MODE RESPONSE MATRIX.

Madrid, June 6, 2007

na a

MODIFIED TIMING MODE - CALIBRATION

Single/double fraction changes as low energy split partners disappear

- \rightarrow energy redistribution changes
- → Timing mode requires recalibration!

< 🗆

Vela X-1: Standard timing mode versus simulated modified timing mode, using NEW RESPONSE MATRIX FOR MODIFIED TIMING MODE.

Madrid, June 6, 2007

Cygnus X-1

Cygnus X-1 - an example of a bright source

Why Cygnus X-1?

- Never before observed with XMM-Newton (Earth avoidance zone)
- Broad Fe Ka line
- Strong, energy dependent variability

2 main parts of analysis:

BROADBAND CONTINUUM

- constrain models for Comptonizing plasma (non-thermal Comptonization?)
- constrain amount of Compton reflection

IRON LINE

 search for structure of the Fe Kα line (relativistic broadening)

 $\langle \Box \rangle$

• determine shape and strength of the Fe K edge

Cygnus X-1

Cygnus X-1 - an example of a bright source

Why Cygnus X-1?

- Never before observed with XMM-Newton (Earth avoidance zone)
- Broad Fe Ka line
- Strong, energy dependent variability

2 main parts of analysis:

 $\langle \Box \rangle$

Madrid, June 6, 2007

Cygnus X-1

THE OBSERVATIONS

Cyg X-1 was observed simultaneously by

- XMM-Newton (total observation time: ~40 ksec)
- RXTE (total observation time: ~152 ksec)
- INTEGRAL (total observation time: ~320 ksec)

for 4 times in November / December 2004

Madrid, June 6, 2007

XMM-Newton Spectrum

 Power-law fit (Γ = 1.97): strong residuals in Fe Kα region

< 🗆

Madrid, June 6, 2007

XMM-Newton Spectrum

- Power-law fit (Γ = 1.97): strong residuals in Fe Kα region
- adding narrow line $(E = 6.51 \text{ keV}, \sigma = 50 \text{ eV})$: still strong residuals in Fe K α region

< 🗆

Madrid, June 6, 2007

XMM-Newton Spectrum

- Power-law fit (Γ = 1.97): strong residuals in Fe Kα region
- adding narrow line
 (E = 6.51 keV, σ = 50 eV):
 still strong residuals in Fe Kα region
- adding relativistic line (E = 6.18 keV, emissivity $\propto r^{-2.6}$): fit improves significantly $(\chi^2_{\text{red}} = 1.5)$

Madrid, June 6, 2007

DISKLINE VS. SMEDGE

BUT: residuals might also be explained by ionized Fe K-shell absorption edge

 \rightarrow in *XMM-Newton* data already indications that relativistic line is needed \implies confirmation using *RXTE*

S.	Fritz,	IAA	I

The XMM Modified Timing Mode

Madrid, June 6, 2007

nac

DISKLINE VS. SMEDGE

BUT: residuals might also be explained by ionized Fe K-shell absorption edge

⇒ spectrum best described by a narrow line and a relativistic line!

< 🗆

Madrid, June 6, 2007

VARIABILITY OF THE IRON LINE

Fe K α line shows strong variability during the observations

 \implies further analysis is ongoing!

< 🗆

Madrid, June 6, 2007

SUMMARY AND OUTLOOK

Modified Timing Mode

- EPIC-mos cameras switched off
- lower EPIC-pn threshold increased to 2.8 keV
- recalibration was needed

Cygnus X-1

- Cyg X-1 was in the Intermediate State
- confirmation of relativistically broadened Iron Line
- Fe Kα line shows strong variability during the observations

< 🗆 🕨 🗵

Sac

SUMMARY AND OUTLOOK

Modified Timing Mode

- EPIC-mos cameras switched off
- lower EPIC-pn threshold increased to 2.8 keV
- recalibration was needed

Cygnus X-1

- Cyg X-1 was in the Intermediate State
- confirmation of relativistically broadened Iron Line
- Fe Kα line shows strong variability during the observations

< ロ > < 同 > < 三 >

Outlook