Fe Kα excitation by electron impact

Ana I Gómez de Castro &

Anna Antonicci

A.I. Gómez de Castro

MENU

- 1. Accretion disks & generation of electron beams
- 2. Interaction of electron beams with matter
- 3. The numerical Lab
- 4. Results & Interpretations
- 5. Conclusions

The physics of accretion-outflow

1. Accretion disks & the generation of electron beams

A.I. Gómez de Castro

...of **magnetized** accretion disk undergoing the MRI ...

A.I. Gómez de Castro

Cosmic ray and X-ray

Reconnecting magnetic fields will accelerate the electrons and heat the plasma

Heating by radiation from shock waves

Turbulence Onset: Electric fields accelerate particles

Reconnection: particles are conducted to the chromosphere

A.I. Gómez de Castro

Interaction of electron beams with matter

•If ϵ <100keV, σ_{ph} >> σ_{el}

•If ϵ <100keV, σ_{ph} << σ_{el}

A.I. Gómez de Castro

The numerical Lab

The propagation of a high energy particle generates a cascade of secondary particles: a shower

Numerical treatment: Montercarlo code in PENELOPE (www.iaea.org)

H, He, O, C, Ne, N, Mg, Si, Fe, S

A.I. Gómez de Castro

Relation with the depth of the cloud ($n_e = 10^{11} \text{ cm}^{-3}$)

Transmitted X-ray

"Soft" electron beams will be absorbed and the output X-ray spectrum will depend on:

- > The gas column
- The relative orientation with the observer

ΔR (10¹²cm) N_H(1.25 10²⁴ cm⁻²)

3	0.48	
4	0.64	
5	0.80	
6	0.96	
7	1.12	
8	1.28	
9	1.44	
10	1.60	

Back-Scattered X-ray

Gómez de Castro & Antonicci 2004

A.I. Gómez de Castro

4. Results & Interpretation

Relation with the electrons energy

- •E<100keV, electrons are rapidly absorbed, X-ray radiation only from the hot-spot.
- •E≈2.2MeV, 99.7% of the electrons reach the rear of the cloud.

XMM - Fe Ka Workshop

A.I. Gómez de Castro

The kinetic energy is spent into:

- X-ray continuum radiation (0.1 %)
- Fe Kα emission (0.01%)
- GAS HEATING!

Only 1% of the incident electrons with kinetic energy 2MeV reach the back of a 6 10¹² cm cloud and their average energy is degraded to 1.44 MeV

$$\varepsilon_{\kappa\alpha}(E) >= \frac{L_{\kappa\alpha,t} + L_{\kappa\alpha,b} + L_{\kappa\alpha,s}}{4\pi}$$

A.I. Gómez de Castro

$$F_{K\alpha}\left(\frac{counts}{s \cdot cm^2}\right) \ge 1.04 \cdot 10^{-56} N_e\left(\frac{d}{1Mpc}\right)^{-2}$$

Thus, for electrons with mean kinetic energy 1MeV, Ne≈3.1 10⁵⁴ -2.49 10⁵⁵ to reproduce the MCG-6-30-15 counts (narrow and broad component, respectively)

The kinetic luminosity of the electrons (assuming 100 s injection time):

log L_{KIN} =46.8-47.7

The elctron kinetic luminosity measured for radio-loud AGNs (Celotti et al 97) is in this range: $45 < logL_{KIN} < 48$

A.I. Gómez de Castro

The black hole paradigma/s

(the presence of very hot plasma emitting in hard X-rays is proposed to explain the Fe K α line emission from the inner border of the accretion disk)

(from Collin et al 2003)

A.I. Gómez de Castro

 $Lx \sim Lbol$ and $H \sim 10 \text{ Rg} \longrightarrow Fx \sim Fvisc$ If electrons are produced at large heights above the disk the electrons are braked to non-relativistic speeds before reaching the disk (τ ~700s) by Inverse Compton scattering

 $\frac{dE}{dt}\left(\frac{erg}{s}\right) = 2.23 \cdot 10^{-9} \left(\frac{r}{20Rg}\right)^2$

Relativistic electrons are able to reach the disk at high speeds.

A.I. Gómez de Castro

5.CONCLUSIONs

- 1. Flares cannot be discarded in magnetized accretion disks
- 2. Electron beams should also be considered as flare outputs and contributors to X-ray radiation (impact with the disk)
- 3. How are outflows generated? May ambient fields play a role in channeling the outflow?
- Ionization by electron impact goes as Z² while photoionization goes as Z⁵, to be taken into account in abundance determinations.

The grid of models will be available soon in our web

You are invited to use it for your modeling

Heating of the "circumflare" material by X-ray

Close to the disk, at high density, forbidden (UV) line emission is produced in a thin cocoon around the X-ray emission regions.

A.I. Gómez de Castro