XMM-Newton detection of relativistic Fe emission in the x-ray spectrum of SAX J1711.6-3808

Celia Sánchez Fernández ISOC, ESAC

SAX J1711.6-3808 some facts

X-ray transient in the Galactic Bulge serendipitously discovered by *BeppoSAX* WFC unit 1 on 2001 Feb.8.8-11.5 UT

Active in January-May 2001

Maximum $L_{\chi}(1-200 \text{ keV}) 5x10^{-9} \text{ erg cm}^{-2} \text{ s}^{-1}$ (in 't Zand et al. 2002) (25% L_{Edd} for M>1.4 M_{sun} @ Galactic Center distance)

Broad band spectrum (1-200 keV) characterized by a highly absorbed, power law cut off above 60 keV, plus a transient soft excess (in 't Zand et al. 2002)

Broad emission feature at the Fe-K line complex energy (in 't Zand et al. 2002)

Spectral/timing properties well correlated, but decoupled from system X-ray luminosity (Wijnands & Miller, 2002)

Black hole candidate (lack of type-I X-ray bursts and coherent oscillations and detection of Fe emission)

SAX J1711.6-3808: light curve

One-day average RXTE/ASM I. curve (1.5 -12 keV) from ASM public archive

XMM-Newton observations

SAX J1711.6-3808 observed during XMM-Newton revolution #225 (TOO-like obs) March 2nd 2001@ 22:23:43-March 3rd 2001@ 02:06:30

> Aimed for largest detection area due to source position uncertainties (\sim 1.2')

Instrument	mode	Filter	Exp. (s)	
EPIC-pn	Full Frame	Thin	9748	
EPIC-MOS1	Timing	Thin	11544	
EPIC-MOS2	Full Frame	Thin	12394	
RGS1	Spectr	-	12954	
RGS2	Spectr	-	12954	
ОМ	Imaging	B	4900	
ОМ	imaging	V	4900	

BUT:

High background...

Pile-up...

26th June 2006

Variable and Broad Iron Lines around Black Holes

SO: effective exposure times significantly diminised....

Instrument	mode	Filter	Exp. (s)		Eff.Exp. (s)
EPIC-pn	Full Frame	Thin	9748	High background	2416
EPIC-MOS1	Timing	Thin	11544	Out of scwin	-
EPIC-MOS2	Full Frame	Thin	12394	Piled-up	-
RGS1	Spectr	-	12954	High background	7573
RGS2	Spectr	-	12954	High background	7425
ОМ	Imaging	В	4900	Out of main scwin	980
ОМ	imaging	V	4900	Out of main scwin	980

EPIC-pn data reduction and spectrum extraction

>Standard data reduction using XMM-Newton SAS V6.0

- >Special treatment to minimize pile-up effects on our data:
 - * Excision of psf core (R $_{inn}$ ~16 ") ~20 % of the psf still valid for analysis

BUT: Count rate 15.44 counts/sec

- * Only pattern 0 events are considered
- * Response matrices adequate for source off-axis position
- * Ancilliary response matrices apropiate for spectrum in annulus

> Data analyzed with XSPEC version 11.3.0

Spectral analysis:

> Spectrum highly absorbed below ~1keV N_H (2.44*10²² cm⁻²)

Best fit parameters

26th June 2006

Variable and Broad Iron Lines around Black Holes

But: is there a disk close to the compact object??? Join fits with RGS

No clue....

26th June 2006

Variable and Broad Iron Lines around Black Holes

10

Conclusions

After (a painful) analysis XMM-Newton spectrum of SAX J1711.6-3808 was extracted.

The continuum of the source is highly absorbed and well described by a power law.

We have detected evidences of Fe K- α emission at an energy ~ 6.7 keV, probably due to FeXXV. The line is red-wards skewed, suggesting a Kerr black hole.

BUT: Where is the line originated??

- Is there a cool disk not detectable from our data? Note that, recently, cool disks in low state have been detected, for example in GX 339-4 during the rising phase of the 2004 outburst (Miller et al 2006), in SWIFT 1753.5-0127 during the decay phase of the 2005-2006 outburst (Miller et al. 2006).

- If not, is the line broadened by Compton processes?

- Or (more exotic) is the origin of the line in a recessing ring of gas orbiting the black hole? (Schnittman et al. 2006)