Relativistic Fe line emission and photoionized absorption in GRO J1655-40 during its 2005 outburst

M. Diaz Trigo¹, A. Parmar², J. Miller³, E. Kuulkers¹

¹European Space Astronomy Center, ESA, Spain ²Research and Scientific Support Department of ESA, ESTEC, The Netherlands ³Department of Astronomy, University of Michigan, USA

26-28 June 2006

Some Fe lines are extremely broad indicating high spin (if disk to ISO) and extreme emissivity (Miller et al 2002, 2003, 2004; Miniutti et al 2004)

26-28 June 2006

Absorption lines seen in galactic black hole binaries

Absorption lines are also often / seen in dipping LMXBs (4U 1323-62, XB 1254-690, XB 1916-053, X 1624-490, MXB 1659-298 ...)

Attributed to a highly photoionized plasma above the accretion disk and mostly equatorial. (Boirin et al. 2005, Diaz Trigo et al. 2006).

Are both absorption and relativistic emission needed?

Recently, it has been argued that relativistic smearing can be significantly reduced if there is also Fe K line absorption from an outflowing disk wind (e.g. Done & Gierlinski, 2006 on XTE J1650-500 - BeppoSAX data).

ASM 0.5-12 keV Light Curve

26-28 June 2006

Continuum model

- Model: abs*(diskbb+powerlaw)
- dbb dominates the emission (>95% of total 0.5-10 keV luminosity)

High-soft (HS) state

26-28 June 2006

Highly-ionized absorption - less ionized in Obs 2

GRO J1655-40 in the HS state Obs 2 - Blueshifted absorption lines in the RGS Outflow into our line of sight -> v ~ 490 +/- 130 km/s

GRO J1655-40 in the HS state Relativistic emission from Fe

black holes

0.5-200 keV best-fit to EPIC pn and ISGRI

26-28 June 2006

but....

Emissivity of the Fe line is extremely high

Some questions:

Where is the line produced? Are the reflection models good for BH binaries?

Is other continuum needed?

Or do we "simply" need a better model of the relativistic Fe K line?

26-28 June 2006

Conclusions

- *Both* extreme relativistic emission from Fe and highlyionized absorption are present in the HS state of GRO J1655-40 during its 2005 outburst.
- The photoionized absorber is less ionized in Obs 2 responding to the lower luminosity -> outflowing wind revealed by RGS observations.
- The broadness of the Fe line shows a radius close to the ISO, indicating a spinning black hole, in agreement with QPOs observations.
- A better model for the Fe K line is very likely needed...

Transmission of the: - ionized absorber - neutral absorber Total transmission

broad Iron lines around black holes

- Disk to minimum stable orbit (ISCO)
- Relativistic effects affect all emission
- Fe Kα line from irradiated disk -> broad and skewed
- Broadening gives an independent measure of R_{in} and spin
- Models predict increasing width as go from low-hard to high-soft states

- High-soft state is disk-dominated
- For $M_{BH} \sim 10 \text{ M} \rightarrow T_{disk} \sim 1 \text{ keV}$
- Hot electrons Compton upscatter photons from outer cool disk -> Power-law component

