Insight into AGN from X-ray Observations of Mkn 766

Jane Turner

Lance Míller, James Reeves, Ian George, Delphíne Porquet', Paul Nandra, Míchal Dovcíak

National Aeronautics and Space Administration Recap of new progress in general in the Fe K band. Absorption/emission inter-play Overview of narrow disklines

XMM data from Mkn. 766 Dísk Sígnatures Spectral Variability

Recap - what's new in the Fe K-band

High (> 10²³ cm⁻²) columns of high ξ gas suggested with detⁿ of ionized edges in Ginga data (Nandra & Pounds 1994)

Chandra/XMM confirm importance of such gas

To understand Fe K profiles this gas needs to be accounted for... Kallman et al 2004 N_H~ 3x 10²³ cm⁻², log ξ=2.25

 reduces implied broad red wing (Kinkhabwala 2003).....but zones isolated to date still leave some signature of reflection

New in Emission...

Narrow Fe lines, shifted from restenergy (Doppler/GR)

First obsⁿ in AGN - NGC 3516 (Turner et al 2002) simult. XMM /Chandra allowed detⁿ of weak features

Rapid (tens of ks) flux/energy variability - <u>must be</u> diagnostics of gas very close to BH

Suggested to be emission from disk hotspots integrated over partial orbits at tens-hundreds of r_q

NGC 3516 (Turner et al 2002)

Doppler-shifted Narrow Lines

> dozen reported, inferred origins few tens - hundreds of r_g strengthening link to disk

Large EWS a problem ?? Selection effect -currently only sensitive to large EW lines

Time to rethink the uniformity of the disk ?!

That EWs <u>can be</u> so large likely telling us we need to review disk emissivity

Possible uneven illumination - X-rays can be produced in intense localized flares on disk, leading to high EW from spots

Or lines may arise in

-areas of enhanced density in disk

-regions of warped geometry

More Specific Disk Diagnostics

Observed Energy /keV

Exciting disk interpretations suggested based on possible periodicity in these narrow/shifted components of Fe emission

Line energy varies with period ~ 165 ks as expected from orbital Doppler shifts

More Specific Disk Diagnostics

NGC 3516 April 2001

S/N

Periodicity in flux suggested Iwasawa et al (2004) for April data from NGC 3516

NGC 3516 Nov 2001

S/N

s/N S/N

NGC 5548

Energytime map of all the XMM data from Mkn 766

XMM observed Mkn 766 for 500 ks, June 2005

At low flux spectrum dominated by low ξ reflection high flux state dominated by PL <u>plus high-ξ reflection</u>

Warm absorber covers all components

cf previous discussions of variable PL, const reflⁿ to explain Seyfert spectral variability (Vaughan & Fabian '04)

-but this analysis aided by high-spectral-reslⁿ PCA (see Miller talk this afternoon) Flux selected spectra, XMM 2000-2005, Miller et al 2006

Fe K α flux continuum flux

He-like Fe emission correlated w/ continuum down to 10 ks (at least) -line lag 10 ks+/-10 ks

Prob by chance $\sim 2.3 \times 10^{-5}$

continuum

He-like Fe emission correlated w/ continuum

Mkn 766 - Miller et al 2006

line flux

He-like Fe emission correlated w/ continuum

He-like Fe emission originates in disk

Lag constraint -origin consistent with ~100 r_g found from 2001 data

Neutral Fe line not correlated w/ continuum but also variable

continuum

The most important result from Mkn 766 is that we are seeing significant Fe K emission from the disk and this is varying correlated with continuum - the diskline is not quite the same as we had previously thought ...

Complex & Variable Absorption

Fe XXVI abs revealed by H-like line originating in zone with log ξ~4, several x 10²³ cm⁻² covering the cool/const reflector

Absⁿ line disappears during observation, this var absⁿ is an additional level of complexity, 2nd-order effect in the gross spectral variability

Complex abs^n , several layers different ξ

Complex & Variable Absorption

Comment on yesterdays statement that by Occam's razor BL is simplest model -

Multi-layered absorbers with components in the $\log \xi \sim 3.5 - 5$ range with N_H $\gg 10^{23}$ cm⁻² are showing up in best S/N data and are clear indicators of absorbing layers not previously modelled - so not all `alternate' absorption models are <u>arbitrarily</u> complex

Observed Energy (keV)

Effect of Variable Absorption?

Can only be done by <u>occultation</u> - continuum & ionised reflector would then be inferred to be co-spatial because of the tightness of the line-continuum correlation

Occulting absorbers would need to be *partially-covering* the source and exist $\sim 100r_g$ Overall - too contrived ...

Summary

Mkn_ 766 illustrates how valuable long_ Seyfert' observations are:

He-líke Fe emíssíon líne correlated. w/ contínuum down to 10 ks (at least)

Spectral variability explained primarily by changes in relative levels of linked p/ionized-disk &cooler/less-variable reflector

Large column of ionized gas revealed through H-like Fe⁻ absⁿ and this varies on ~days - lesser contribution to spectral variability_

Can díagnose <u>inner dísk</u> most easily in Seyfert <u>hígh-states</u>