

Statistics of broad lines in XMM-Newton AGN

Matteo Guainazzi & Stefano Bianchi

European Space Astronomy Center of ESA Villafranca del Castillo, Spain

Michael Dovčiak

Academy of Science of the Czech Republic Prag, Czech Republic

XMM-Newton

Science Operations & Data Systems Division Research & Scientific Support Department

Page 1

<u>Ubiquity of broad lines?</u>

Lockman Hole AGN

"Statistics of broad lines in AGN" – ESAC – 27 June 2006

<u>... or not?</u>

(after Jiménez-Bailón et al. 2005)

Question to be answered

• How often does relativistic broadening appear in AGN spectra?

- Are there any dependencies/correlation from/with other observables?
- Which properties of the accretion flow/black hole can we extrapolate to the parent population from the existing observations?

₩

Study of the largest sample of high-quality X-ray spectra currently available

XMM-NEWTON SCIENCE ARCHIVE

The "sample"

- 32 Seyfert 1 (Sy1)
- 13 Compton-thin ($N_H < 10^{22.5} \text{ cm}^{-2}$) Seyfert 2 (Sy2)
- 18 Narrow Line Seyfert 1 Galaxies (NLSy1)
- 39 Radio-quiet Quasars (RQQ)

Rules of the game

- **Baseline model:** $exp(-\sigma_{ph}N_{H}) \times A[E^{-\Gamma}+C(R,i,E)] + \Sigma_{i}G_{i}+B(i,\beta,a)$
 - $C \rightarrow$ Compton reflection
 - $-i \rightarrow \text{inclination}$
 - $R \rightarrow$ reflection component normalization (partly degenerate with i)
 - Solar metallicity
 - − $G \rightarrow$ Unresolved Gaussian profiles with E_{rest}=6.4, 6.7, 6.96 keV
 - $B \rightarrow \text{Broad line component (diskline, laor, ky)}$
 - $\beta \rightarrow$ radial dependence of emissivity
 - $-a \rightarrow$ black hole spin
 - $E_{rest} = 6.4 \div 6.7 \ keV$
 - $-R_{in}=R_{ISCO}$ and $R_{out}=400r_g$ (*i.e.* using β as an indicator of et al. 2005) "relativiteness")

Detection results

Detection statistics

What have we indeed detected?

6

5

Energy (keV)

7

8

1.0

3

Correlation between broad lines and warm absorbers?

'Statistics of broad lines in AGN" – ESAC – 27 June 2006

Properties derived from detected lines - II.

Statistics of broad lines in AGN" – ESAC – 27 June 2006

<u> Stacked spectra – Iow L_x</u>

Accretion in type 1/type 2 AGN

"Statistics of broad lines in AGN" – ESAC – 27 June 2006

ESAC

"Statistics of broad lines in AGN" – ESAC – 27 June 2006

What do we need to get the true fraction of relativistic AGN?

- Two ingredients are required
 - 1. A complete sample
 - 2. Enough statistics
- Complete sample: <u>Piccinotti</u>
- *Enough statistics*: ≥2×10⁵ counts in the 2-10 keV band

We need 2735 XMM-N ks more

Upper limits are significant (15% of well exposure sources)

Measurements and u.l. are inconsistent

2750 ks? Are you kiddin'?

2-10 keV Luminosity bin (erg s ⁻¹)	"Source completeness" (for how many sources we already have 2×10 ⁵ counts)	XMM-N time (ks) to achieve "completeness"
$L_X \le 10^{43}$	4 out of 10	905
$10^{44} \ge L_X > 10^{43}$	2 out of 7	490
$10^{45} < L_X$	0 out of 10	1340

In the current "optimally exposed" sample (6 objects), the fraction of AGN where relativistic lines are found is: $50\pm32\%$

<u>Conclusions</u>

- Broad lines:
 - are present in about 50% of sufficiently well exposed spectra
 - are no significantly different between type 1 and type 2 AGN (factor <2 difference at face value)
 - cover a large range of EW:
 - <log(EW)>=2.0
 - $\sigma_{\text{log(EW)}}$ =1.1
 - are significantly more common in low luminosity AGN
- They tell us about:
 - Disk inclination (<i>=34°)
 - Accretion flow radial properties ($<\beta>=-2.7$)
 - Black Hole spin (more Kerr than Schwarzschild)
- Results still to be refined to improve:
 - Study dependency on continuum models
 - Complete coverage of line parameter space

"Statistics of broad lines in AGN" – ESAC – 27 June 2006

Statistics of broad lines in AGN" – ESAC – 27 June 2006

<u>Caveats</u>

ESAC

Limitations of the current approach:

- Decoupling of the "broad line" from the "soft excess" problem
 - No ionized reflection
 - No ionized absorption
- Intrinsic curvature of Comptonized spectra neglected
- No explicit inclusion of absorption features in the model

However:

• It includes explicitly narrow emission line contributions from cold reflection and warm scattering

• \Rightarrow EW of the relativistic iron line could be underestimated