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ABSTRACT

The RSCVn system σ Geminorum was observed by
XMM-Newton on April 2001 during a large flare. We
model the emission measure distribution (EMD) during
the flare and during a quiescence period. In the flare, a
two phase behaviour is found in which the cool plasma
(kT < 2 keV) is not disturbed while a large hot com-
ponent, at temperatues of kT > 3 keV emerges. Funda-
mental limitations on EMD modeling of high temperature
plasmas are then discussed, in the context of the σ Gemi-
norum flare.

Key words: stars:activity – stars:corona – stars:flares –
stars:abundances – stars:individual: (σ Geminorum) – X-
rays:stars.

1. INTRODUCTION

The interplay between steady coronal emission and coro-
nal flares has been a subject of ongoing research for many
years. X-ray line resolved spectra available with Chandra
and XMM-Newton allow now for unprecedented plasma
diagnostics.

Measurements of relevant changes could offer impor-
tant diagnostics for the heating and the plasma trans-
port process in stellar coronae. It is unclear how exactly
large flares affect the abundances and thermal structure
in stellar coronae. Although indications of changes in
the metallicity of a flaring corona were reported early on
from low-resolution devices (see review by Güdel, 2004),
more reliable analysis had to wait for the advent of high-
sensitivity and medium-to-high resolution spectrometers.

A crucial reconsideration of the situation came with
the advent of high-resolution spectroscopy with XMM-
Newton and Chandra, but the findings so far still lack
systematic trends. While Audard et al. (2001) found sig-
nificant enhancements of low-FIP elements in a flare on

HR 1099, two flares reported by Osten et al. (2003;
for σ2 CrB) and Güdel et al. (2004; for Proxima Cen-
tauri) showed an increase of the abundances of several
elements, but no selective FIP-dependence was found.

Resolving the thermal structure and finding element
abundances are entangled problems that need to be solved
simultaneously. The most common approach is the
global fit, where the plasma is treated as composed of
several isothermal components. Although this presenta-
tion of the thermal structure is not very physical, it usu-
ally proves useful for abundance calculations. When the
thermal structure itself is of interest, attempts are made
to produce a continuus thermal distribution: Emission
Measure Distribution (EMD) or sometimes referred to as
Differential Emission Measure (DEM). This is achieved
by inverting a set of integral equations for emission lines
and / or the continuum. The inversion problem however
is mathematically ill posed and the solution is unstable
against errors in the measurements, ie. small variations
of the measured fluxes translate into large variations of
the EMD solution (Craig & Brown 1976).

RS CVn binary systems are bright X-ray and EUV
sources owing to rapid rotation, generating a magnetic
dynamo. As such, they have been studied extensively
in both bands (Audard et al., 2003; Sanz-Forcada et al.,
2002, respectively, and references therein). The RS CVn
σ Geminorum (HD62044, HR 2973, HIP 37629) is par-
ticularly bright and well observed at all wavelengths. For
an RS CVn, it has a rather long period of 19.6045 days
(Duemmler et al., 1997). The primary star is a K1 III
type, red giant. Little is known of the secondary as it has
not been detected at any wavelength, but restrictions to its
mass and the low luminosity suggest that it is most likely
a late-type main sequence star of under one solar mass
(Duemmler et al., 1997).

The σ Geminorum system is a luminous X-ray (logLX ≈
31.0±0.2 erg s−1; Yi et al., 1997, corrected for a distance
of 37.5 pc) and radio (logLR ≈ 15.40 erg s−1 Hz−1, at
6 cm wavelength; Drake et al., 1989) source. While most
observations found it to be a relatively steady emitter, a
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Figure 1. Light Curves for σ Geminorum in time bins
of 500 s. (a) April 2001 RGS (1 and 2 combined) ob-
servation (1st and 2nd orders). (b) December 1999
LETG/ACIS observation (all orders).

very large flare has been detected in December 1998 with
EUVE (Sanz-Forcada et al., 2002). Another flare was
detected in April 2001 both in the X-ray and in the radio
in which a Neupert effect: d

dtLX ∝ LRadio (Neupert,
1968) was found (Güdel et al., 2002).

In this paper we will use the σ Geminorum example to
discuss some of the disgnostics problems that originate
in the high temperatures of the plasma in large flares. For
a more complete analysis of the high resolution σ Gemi-
norum observations discussed below, see Nordon et al.
(2005).

2. OBSERVATIONS

The target σ Geminorum was observed by XMM-Newton
in April 2001 for a total exposure time of 54 ks. The
data were reduced using the Standard Analysis System
(SAS) version 6.0.0. In this analysis we use the Re-
flection Grating Spectrometers (RGS) in the 1st order of
diffraction, which gives reliable data from 6 to 38 Å. Line
fluxes of Fe24+ and Fe25+ were extracted from the EPIC-
pn data with the use of the XSPEC software package.
Background is subtracted using off-source CCD regions.
Chandra observed the target on December 1999 for a
duration of 100 ks with the Low Energy Transmission
Grating (LETG) + Advanced CCD Imaging Spectrom-
eter (ACIS) configuration in Continuous Clocking (CC)
mode. The data were reduced using the CIAO package
version 3.0.2.

The long duration flare, with an observed peak rise of
20%, is seen in the RGS light curve presented in Fig-
ure 1. The rise in flux is roughly uniform in the entire
RGS wavelength band. The flare light curve is contrasted
with the flat light curve obtained from the LETG obser-
vation shown below in the same figure.

3. EMISSION MEASURE DISTRIBUTION

3.1. Emission measure distribution modeling

The continuum is almost featureless for a distrubution of
plasma temperatures and in addition, the continuum from
the LETGS instrument is unreliable due to the CC mode
(Nordon et al. 2005). Therefore line fluxes alone are used
to derive the emission measure distribution (EMD).

The observed line flux F qji of ion q due to the atomic tran-
sition j → i can be expressed by means of the element
abundance with respect to Hydrogen Az , the distance to
the object d, the line power P qji and the ion fractional
abundance fq as:

F qji =
Az

4πd2

∫ ∞

0

P qji(T )fq(T )EMD(T )dT (1)

We use the primary line (selected bright, weakly blended,
usually resonant line) from every Fe ion in the observed
spectra to get a set of integral equations (eq. 1), whose
solution yields the EMD scaled by the unknown Fe abun-
dance. For other elements, we use ratios of the He-like
to H-like line fluxes instead of absolute fluxes, thus the
element abundance Az cancels out. This adds another set
of equations that constrain the shape of the EMD, and do
not depend on the abundances:

Rz =
FHe−likeji

FH−likelk

(2)

The X-ray spectra include as many as ten Fe ions but no
more than two ions from other elements. In total, we get
14 equations for the flare and quiescence observations,
but different equations, depending on which lines are vis-
ible. We fit the line fluxes and flux ratios using the least
squares best fit method to solve for the EMD, where the
EMD is expressed by a parameteric non-negative func-
tion of T . This method yields the estimated shape of
the EMD, independent of any assumptions for the abun-
dances, and is scaled by the Fe abundance. The integra-
tion in eq. 1 and eq. 2 is cut-off at 8 keV beyond which the
EMD is completely degenerate. This means that some of
the EM in the last bin could be attributed to even higher
temperatures.

The atomic data for the line powers are calculated using
the HULLAC code (Bar-Shalom et al., 2001). In order
to measure the line fluxes and solve for possible blend-
ing, we preform an ion-by-ion fitting to the spectra. The
line powers for each ion are calculated at its maximum
emissivity temperature and then passed through the in-
strument response. The observed spectra are fitted by a
set of complete individual-ion spectra simultaneously, re-
sulting in an excellent fit that accounts for all the observed
lines and blends. This process is similar to the one used
in Behar, et al. (2001) and Brinkman et al. (2001). The
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line fluxes used in the EMD fitting are listed in Nordon et
al. (2005). The ionic abundances (fq) for: Fe, Ar, S, Si,
Mg are taken from Gu (2003), whereas Mazzotta et al.
(1998) is used for the other elements.

Our goal is to compare the EMD of the flare and quies-
cence states. It is important to note that the solution for
the EMD is not unique as is the case with integral equa-
tions of this sort (Craig & Brown, 1976). On scales much
smaller than the width of the ions emissivity curves, or in
temperature regions where there are no emissivity peaks
of any ion, there is no way of constraining the EMD.
Therefore, in order to be able to compare the EMD so-
lutions, the confidence intervals of the solution are as im-
portant as the actual values. We choose to fit a staircase
shaped function to allow for local confidence intervals es-
timates. Since the errors on the EM can be non-linear in
the parameters (due to the flux ratio equations), localized
asymptotic confidence intervals are inappropriate. We
use the χ2 probability distribution to get the confidence
intervals, by searching the model parameters space for a
target χ2 surface. The deviation of the target χ2 from
the best-fit value gives the confidence level. This also in-
cludes uncertainties due to non-zero covariances between
parameters.

The fitted EMD of σ Geminorum during flare and qui-
escence are plotted in Figure 2. with 90% confidence
intervals. The value of the EMD in each bin represents
the average EMD over the bin. Selecting the number of
bins and their widths is not trivial. Since, as discussed
above, we are interested in meaningful confidence inter-
vals, we cannot use narrow bins, as this will result in ex-
cessive error bars. The line emissivity curves have con-
siderable widths and some extend to temperatures much
higher than their peak emissivity, resulting in strong neg-
ative correlations between the EM in neigbouring bins.
Therefore, on small enough scales we have no informa-
tion on how the EM is distributed and we can only con-
strain the total EM (or average EMD) over a bin’s temper-
ature range. The errors on the measured fluxes increase
the uncertainty on the EM even further. Ultimately, if
meaningful confidence intervals are to be obtained, the
number of bins has to be kept small and their width opti-
mized according to the constraints in each region.

3.2. Integrated Emission Measure

The important physical quantity is the integral of the
EMD over a range of temperatures. The integrated EM
from zero to kT is plotted in the bottom panel of Fig-
ure 2. with 90% confidence bars. The uncertainties
caused by the strong correlation between the EMD bins
disappear with integration, resulting in much smaller er-
ror bars. Several works comparing different EMD recon-
struction methods showed that while the representation of
the EMD is heavily model dependent, the total integrated
EM stays remarkably the same (for example, Fludra &
Sylwester, 1986). An important exception to this is when
significant amounts of EM exist at temperatures where all
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Figure 2. Top: EMD of the two observations. Error
bars indicate 90% confidence intervals. bottom: The in-
tegrated EM up to kT , with 90% confidence intervals.
EMD is scaled according to Solar Fe abundance, taken
to be: Fe/H = 4e-5.

line emissivities are low, such as beyond the emissivity
peaks of the highest Fe degrees.

Simple heating of the plasma does not change the total
EM, therefore variations in the total EM indicate added
material, changes in density or both. The total integrated
EM up to 3 keV is slightly higher during the flare, al-
though still consistent with the quiescence EM, within
the 90% confidence intervals. The total EM up to the
8 keV cut-off during the flare is 5.4±1.9 times that of the
quiescence EM, which is very large in a bright system
such as σ Geminorum, so it is unlikely that such a huge
amount of plasma is added to the corona. The more likely
interpretation is that the hot EM originates from plasma
heated lower in the chromosphere, where the higher den-
sity would result in a large EM, even for a small amount
of evaporated plasma. The increase in density was not de-
tected here, but this could be due to the high charge states
(H-like and bare) typical of the high-T flare, for which no
density diagnostics are available.

3.3. Abundances

Once we have solved for the EMD, abundance calcula-
tions are made easy. In order to extract the X/Fe abun-
dance ratios, we simply calculate the non-Fe line fluxes
(eq. 1) from the Fe-scaled EMD. The ratio between the
measured and calculated flux gives the abundance value.
We use abundance ratios relative to Fe and not to H since
this is based on line emission ratios, while H does not
emit lines at the relevant temperatures and abundances
relative to H have to rely on ambiguous continuum mod-
eling.

No statistically significant abundance variations between
flare and quiescence were detected. This does not nec-
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essarily mean that the abundances are the same since the
high temperatures in the flare can make the detection of
abundance variations difficult, as we explain in section 5.

4. EMD DEGENERACY AND CONFIDENCE
LEVEL

4.1. Definitions

The inversion of a set of integral equations as presented
above is not unique. Even for very small errors on the
measured fluxes, we get an infinite number of possible
solutions (in the least squares sense). Therefore, esti-
mating the EMD uncertainties is crucial for the physical
interpretation of the EMD and for comparisons between
different activity epochs. It is important to note that the
EMD uncertainty in a given T range is caused by a de-
generacy of the inversion problem itself and not merely
by the errors on measured fluxes, as we will explain be-
low. This is not a problem caused by a model. The goal is
to find what variations on the source EMD will result in
indistinguishable spectra and to determine the maximal
temperature resolution which can be achieved, regardless
of our specific EMD representation or method of solu-
tion.

We would like to define a measure for the degeneracy of
the EMD solution at a given temperature T. For simplic-
ity of notation let us define εi(T ) as the emissivity of an
observed line i:

εi(T ) = εqkl(T ) ≡ P qkl(T )fq(T ) (3)

Using this definition, the observed line flux (eq. 1) can be
written as:

F i =
AZ

4πd2

∫ ∞

0

εi(T )EMD(T ) dT (4)

εi(T ) defines the contribution of the plasma at tempera-
ture interval [T, T + dT ] to each observed line flux F i
scaled by EMD(T )dT . The EMD contributions at a
given temperature T to all of the observed line fluxes F i
(i=1..N, number of observed lines) forms a vector ~ε(T ).

Let us now quantify the similarity between the emissivity
vectors at different T . In other words, how much plasma
at T 1 can be replaced with plasma at T2 and still produce
the same observed line fluxes within the observational er-
rors. Varying the EMD at T1 by δEMD(T1) = A1δ(T−
T1), results in a deviation in the line flux vector ~F . This
deviation can be compensated partially by another EMD
variation at temperature T2, δEMD(T2) = A2δ(T−T2).
If vector ~ε(T2) were parallel to ~ε(T1), there would be to-
tal compensation. Therefore we would not distinguish
between plasma at T1 and plasma at T2. In the general
case, the deviation in the observed line fluxes is:

4πd2

AZ
∆~F = A2~ε(T2)−A1~ε(T1) (5)

The condition for |∆ ~F | to be minimal, is thatA2 satisfies:

A2|~ε(T2)| = A1|~ε(T1)|cosθ1,2 (6)

where θ1,2 is the angle between the emissivity vectors of
temperatures T1 and T2:

cos θ1,2 =
~ε(T1) · ~ε(T2)

|~ε(T1)||~ε(T2)| (7)

The correlation angle θ1,2 is a measure of the spectral
similarity of plasmas at different T . In practice one needs
to weigh flux deviations by the errors on the measured
line fluxes σi. We can define a modified emissivity vec-
tor ~ξ(T ) whose components are ξi(T ) = εi(T )/σi. An
appropriate correlation angle θ̃1,2 can then be defined:

cos θ̃1,2 =
~ξ(T1) · ~ξ(T2)

|~ξ(T1)||~ξ(T2)|
(8)

Consequently, we define a simple expression for a χ2-like
significance that represents the ability to discriminate be-
tween the EMDs that produce the two sets of line fluxes:

∆χ2
T1,T2

= |A1
~ξ(T1)−A2

~ξ(T2)|2 (9)

Now, the minimization of ∆χ2 requires that:

∆χ2
T1,T2

= A2
1|~ξ(T1)|2 sin2 θ̃1,2 (10)

We can use |~ξ(T1)| sin θ̃1,2 to define and map a degener-
acy length which will set a minimum temperature width
to features we can detect in the EMD, with respect to their
EM (A1). The limit is set by:

A1(T1, T2) =

√
∆χ2

|~ξ(T1)| sin θ̃1,2

(11)

Any EMD variations of am amountA1 or less of total EM
inside this temperature range will produce the exact same
spectra up to the accuracy of measurement, quantified by
∆χ2. This approach can be expanded to include also the
continuum by measuring it at different wavelengths and
treating the flux at those wavelengths as lines. However,
we do not use the continuum here since it was not used in
the σ Geminorum analysis.
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Figure 3. Constraints map for the EM using only lines
of Fe16+ to Fe25+. Colour scale is logA1. Selecting a
temperature T1 the contour lines mark the temperature
uncertainty T2 for the corresponding EM. Around 1 keV
we get good constraints due to Fe16+ to Fe23+ having
narrow emissivity curves that peak between 500 and 1600
eV. The problematic region around 3 keV is marked by
contour lines stretching outside of the map.

4.2. Application to σ Geminorum

Setting ∆χ2 = 1 and using only Fe lines, where flux
errors are taken from the flare observation in Nordon et al.
(2005), the mapping of A1(T1, T2) is plotted in Figure 3.
We note that A1 tends to infinity at T1 = T2.

In order to make reading and understanding of Figure 3
easier, cross sections of the map at fixed T1 are plotted
in Figure 4. The width of a curve at a given EM is the
fundamental uncertainty in temperature for a component
of that size. For example, the crossection at kT = 1 keV
shows that an EM amount of logEM < 52.5 cm−3 from
this temperature may be redistributed within an interval
of ±0.1 keV and still produce the same spectra in the
sense of ∆χ2 ≤ 1. Therefore using bins of less than
0.2 keV width around this temperature is meaningless if
the average EMD <1.5 1053 cm−3 keV−1. In the case
of σ Geminorum, the average EMD at kT = 1 keV was
only slightly higher ∼2.2 1053 cm−3keV−1, which will
result in EMD uncertainty making it almost consistent
with zero. Eventually a 0.8-1.2 keV bin was used in Fig-
ure 2 in order to have much more EM in the bin than this
uncertainty value. Using averaged EMD over a wider bin
allows us to put meaningful, well localized constraints on
the EMD at the cost of temperature resolution.

As temperature rises the constraint generally becomes
weaker and bins containing more total EM are needed.
In Figure 3 the problematic region around 3 keV, where
there is a gap between the emissivity peaks of Fe23+ and
Fe24+, is clearly visible by the bend in the contour lines.
This is the reason the 3 keV bin in Figure 2 is poorly
constrained.
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Figure 4. Cross sections of Figure 3 at various constant
kT1 values. Note that log EM tends to infinity at kT1 =
kT2.

One has to remember that the mapping of A1(T1, T2) is
observation-specific, as it depends on the line flux errors.
Still, we can conclude that generally: The fundamental
degeneracy is caused by the slow variation with T of the
emissivity vector~ε(T ). The scale of the degeneracy prob-
lem is set by the absolute value of the modified emissivity
vector |~ξ(T1)| which can be understood as a signal-to-
noise ratio per EM unit.

5. DIFFICULTIES OF HIGHT-T FLARES

When a large amount of EM is located at high temepra-
tures, as is often the case in large flares on RSCVn sys-
tems, several difficulties in measuring plasma parameters
arise. When temperatures are high enough, a significant
portion of the elements are in their H-like ionic form or
worse - bare, and line diagnostics lose power. Our abil-
ity to measure densities relies mostly on He-like triplets.
However, in a two-phase scenario like in σ Geminorum,
what we measure in practice is the density of the sur-
rounding cooler quiescent plasma and not the density in
the flaring region where there are no He-like ions. In Fig-
ure 5 we plot the normalized emissivities of lines avail-
able in the RGS (plus the He-like & H-like Fe from EPIC)
during the flare. We see that the emissivity of He-like
ions (dashed lines in lower panel) is extremely low above
2 keV. The same problem applies to abundances. For ex-
ample, a high abundance of oxygen in a kT = 6 keV re-
gion is invisible to us since at 6 keV oxygen is in the bare
state (but we will still detect the undisturbed surrounding
cooler plasma).

We can also see from Figure 5 that the kT range of 0.5-
2 keV is well covered by eight Fe ionization degrees and
most of the other elements. Emission from higher kT is
covered only by the highest degrees of Fe - mostly Fe24+
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and very weak tail-end emission of H-like ions of other
elements, which leads to higher uncertainties in the EMD,
as discussed in the previous section. It is also interesting
to note that the emissivity of Mg11+, although peaking at
∼850 eV stretchs out to temperatures far beyond the peak
and into the range of the flare temperatures. In the RGS it
will be the only non-Fe ion to be effected from EM above
2 keV as Si13+ usually suffers from high noise and is not
useful.

In this σ Geminorum example we determined the flaring
plasma to be mostly above 3 keV. Therefore, all density
measurements and element abundances of C,N,O,Ne,Mg
and Si (available in the RGS) during the flare are in
essence, measurements of the surrounding quiescent
plasma. In this observation we do not have post-flare
data since the observation ended before the flare fully de-
cayed, but in such a case it will be interesting to measure
the abundaces immediately after the flare, when most of
the flaring plasma has cooled to quiescent temperatures.
Still, if the large EM of the flare originated in the higher
densities of the chromosphere, the evaporating plasma
will rise and cool in the less-dense corona. Hence, the
EM will drop significantly and we might not be able to
detect variations on the significant background emission
of the surrounding plasma unrelated to the flare.

In conclusion, results of previous works, where some de-
tect density and abundance variations in large flares and
some do not, may depend heavily on the temperatures in
the flare and the amount of surrounding quiescent plasma,
and not only on what actually happened in the flare. Vari-
ations in the thermal structure of the plasma are elusive
due to the difficulty of determining the uncertainties of
possible EMD solutions on small scales.
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