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ABSTRACT 
 
Chandra observations show the importance of 
the X-ray band for studying the evolution of 
galaxies. Binary X-ray sources are an easily 
detectable tracer of the stellar population. 
Chandra studies of these populations are giving 
us insights into the nature and formation of these 
binaries, and provide the basis for diagnostics of 
galaxy evolution. With Chandra and XMM-
Newton we can explore relatively poorly known 
aspects of the black hole population of the 
universe: ultra-luminous X-ray sources, that may 
be connected with the ‘missing’ intermediate 
mass black holes predicted by hierarchical 
galaxy and black hole formation scenarios; and 
quiescent supermassive nuclear black holes and 
their surroundings, as a way of understanding the 
full range of the AGN phenomenon. Finally, the 
X-ray band provides the only way to explore hot 
plasmas in galaxies; recent observations are 
revealing the importance of these plasmas as 
vehicles of both chemical enrichment and 
energy. 
 
1. INTRODUCTION 
 
This talk would not have been possible without 
Chandra. Although XMM-Newton has 
contributed significantly to the study of the 
nearest galaxies, the sub-arcsecond resolution of 
Chandra is essential for detecting populations of 
X-ray sources in galaxies to the Virgo Cluster 
and beyond, at the luminosities of the bright 
Galactic X-ray binaries.   
 
This resolution is also needed to explore the X-
ray emission of normal galaxies at high redshift, 
to obtain sensitive data on the emission and the 
surroundings of the silent supermassive black 
holes found at the nuclei of most large galactic 
bulges, and to study the relatively 
uncontaminated emission of hot plasmas in 
galaxies.  
 
 
 
 

2. STELLAR EVOLUTION IN X-RAY 
BINARIES 
 
It is well known that the Milky Way hosts both 
old and young X-ray source populations, 
reflecting its general stellar make up. With 
Chandra’s sub-arcsecond angular resolution, 
combined with CCD photometric capabilities 
(Weisskopf et al. 2000), we can now study these 
X-ray populations in galaxies of all 
morphological types, down to typical limiting 
luminosities in the 1037 ergs s-1 range.  At these 
luminosities, the old population X-ray sources 
are accreting neutron star or black-hole binaries 
with a low-mass stellar companion, the LMXBs 
(life-times ~108-9 yrs). The young population X-
ray sources, in the same luminosity range, are 
dominated by neutron star or black hole binaries 
with a massive stellar companion, the HMXBs 
(life-times ~ 106-7 yrs; see Verbunt & van den 
Heuvel 1995 for a review on the formation and 
evolution of X-ray binaries), although a few 
young supernova remnants (SNRs) may also be 
expected. At lower luminosities, reachable with 
Chandra in Local Group galaxies, Galactic 
sources include accreting white dwarfs and more 
evolved SNRs. With Chandra’s angular and 
spectral resolution, populations of point-like 
sources are easily detected above a generally 
cooler diffuse emission from the hot interstellar 
medium (fig. 1). Note that luminous X-ray 
sources are relatively sparse by comparison with 
the underlying stellar population, and can be 
detected individually with the Chandra sub-
arcsecond resolution, with the exception of those 
in crowded circum-nuclear regions. 
 
To analyze this wealth of data two principal 
approaches have been taken: (1) a photometric 
approach, consisting of X-ray color-color 
diagrams and color-luminosity diagrams, and (2) 
X-ray luminosity functions (XLFs). Whenever 
the data allow it, time and spectral variability 
studies have also been pursued. Optical and radio 
identifications of X-ray sources and association 
of their position with different galaxian 
components are now being increasingly 
undertaken.  
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Fig. 1 – Chandra image of M83 (red is low 
energy and blue high energy), from the Chandra 
web page (Soria & Wu 2003) 
 
Given the lack of standard X-ray photometry to 
date, different definitions of X-ray colors have 
been used in different works; in the absence of 
instrument corrections, these colors can only be 
used for comparing data obtained with the same 
observational set up. Colors, however, have the 
advantage of providing a spectral classification 
tool when a limited number of photons are 
detected from a given source, which is certainly 
the case for most X-ray population studies in 
galaxies. Also, compared with the traditional 
derivation of spectral parameters via model 
fitting, color-color diagrams provide a relatively 
assumption-free comparison tool. Chandra-
based examples of this approach can be found in 
Zezas et al. 2002a, b and Prestwich et al. 2003, 
among others. The X-ray color-color diagram of 
Prestwich et al. 2003 (fig. 2) illustrates how 
colors offer a way to discriminate among 
different types of  X-ray sources. 
 
XLFs are increasingly used to characterize the 
X-ray source populations of different galaxies. 
Compared to the Milky Way, external galaxies 
provide clean source samples, all at the same 
distance. Moreover, the detection of X-ray 
source populations in a wide range of different 
galaxies allows us to explore global population 
differences that may be connected with the age 
and or metallicity of the parent stellar 
populations (see review of Fabbiano & White 
2005 and references therein; Kong et al. 2003; 
Belczynski et al. 2004). In general, X-ray 

sources associated with young stellar populations 
follow a significantly flatter XLF than that of the 
X-ray sources in old stellar systems. A good 
example is provided by M81, where the XLF of 
the spiral arm stellar population is flatter than 
that of the inter-arm and bulge regions, 
consistent with the prevalence of short-lived 
luminous HMXBs in younger stellar populations 
(Tennant et al. 2001, fig. 3; Swartz et al. 2002).  
 
 

 
Fig. 2 – Chandra color-color diagram from 
Prestwich et al. 2003 
 
The same trend is found comparing the X-ray 
populations of actively star-forming galaxies 
with those of E and S0s. While the total number 
of X-ray sources in star-forming galaxies (the 
normalization of the XLF) is driven by the star 
formation rate, in E and S0 galaxies total stellar 
mass appears to be the driving factor, with the 
specific frequency of globular clusters as a 
second order effect  (e.g., Zezas & Fabbiano 
2002; Kilgard et al. 2002; Grimm, Gilfanov & 
Sunyaev 2003; Gilfanov 2004; Kim & Fabbiano 
2004).  
 
The tools that are being developed for 
characterizing and understanding the X-ray 
source populations of nearby galaxies lay the 
foundation of future work in X-ray population 
synthesis (see Belczynski et al. 2004). We know 
from the co-added statistical detections of high 
redshift galaxies in deep Chandra surveys that 
there is X-ray evolution with redshift (Lehmer et 
al. 2005) in galaxies. The next step will be to use 
what we are learning from the nearby universe, 
together with the observational constraints 
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derived from observations of the high z universe, 
to put firm observational and theoretical 
constraints on the evolution of X-ray binary 
populations (e.g. Ghosh & White 2001). 
 

 
 

 
Fig. 3  – Bulge and disk XLFs of M81 (Tennant 
et al. 2001). 
 
3. BLACK HOLES AND THEIR 
ENVIRONMENT 
 
One of the current hot topics in astrophysics and 
cosmology is the formation and evolution of 
black holes and their relation to the formation of 
galaxies. X-ray observations can help constrain 
some of these scenarios. I will discuss here two 
topics related to understanding the entire 
spectrum of black holes: ultra-luminous X-ray 
sources (ULXs), and silent nuclear supermassive 
black holes.  
 
3.1 ULXs 
 
The most widely used observational definition of 
ULXs is that of sources detected in the X-ray 
observing band-pass with luminosities of at least 
1039 erg s-1, implying bolometric luminosities 
clearly in excess of this limit. This ULX 
luminosity is significantly in excess of the 
Eddington limit of a neutron star (~2 × 1038 erg s-

1), suggesting accreting objects with masses of 
100 M


 or larger. Since these masses exceed 

those of stellar black holes in binaries (up to ~30 
M


, Belczynski, Sadowski & Rasio 2003), 

ULXs could then be a new class of astrophysical 
objects, possibly unconnected with the evolution 
of the normal stellar population of a galaxy. 
ULXs could represent the missing link in the 
black hole mass distribution, bridging the gap 
between stellar black holes and the super-
massive black holes found in the nuclei of early 

type galaxies. These ‘missing’ black holes have 
been called intermediate mass black holes 
(IMBH), and could be the remnants of 
hierarchical merging in the early universe 
(Madau & Rees 2001), or could be forming in 
the core collapse of young dense stellar clusters 
(e.g. Miller & Hamilton 2002). 
 
While ULXs have been known for the last ~20 
years, the detection of large samples of these 
sources has required the observations of many 
galaxies, and in particular active star-forming 
systems, where they are copious. Chandra and 
XMM-Newton observations have shown that 
ULXs tend to be associated with very young 
stellar populations (such as that of the Antennae 
galaxies, where 14 such sources are found; 
Fabbiano et al. 2004a). These results have 
suggested the alternative view that ULXs could 
just represent a particular high-accretion stage of 
X-ray binaries, possibly with a stellar black hole 
accretor (King et al. 2001; see also Grimm, 
Gilfanov & Sunyaev 2003; Rappaport, 
Podsiadlowski & Pfahl 2005), or even be 
powered by relativistic jets in microquasars 
(Koerding, Falke & Markoff 2002). Chandra and 
XMM-Newton work has confirmed that ULXs 
are compact accreting sources (as suggested by 
ASCA results, Makishima et al. 2000; Kubota et 
al. 2001). Flux-color transitions have been 
observed in a number of ULXs, suggesting the 
presence of an accretion disk. Some of these 
spectra and colors are consistent with or 
reminiscent of those of black hole binaries (e.g., 
in the Antennae, Fabbiano et al. 2003a, b, 
2004a). However, these results do not constrain 
unequivocally the mass of the compact accretor 
(see e.g. reviews by Fabbiano & White 2005; 
Fabbiano 2005a). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 - M82, left, and the Chandra image of the 
area in the marked rectangle (right), with the 
ULX marked by the arrow; from Fabbiano 
(2005b) 
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My present view (based on the observational 
results to date) is that ULXs may be a mixed bag 
of sources, perhaps a few are the elusive IMBHs, 
but most may be more normal black hole 
binaries  (see Fabbiano 2005b). 
 
3.2 Silent supermassive black holes 
 

It is now established that supermassive nuclear 
black holes are ubiquitous in large E and S0 
galaxies and in spiral bulges (e.g. Tremaine et al. 
2002). Only a small fraction of these black holes 
are luminous AGN, while low-level activity is 
more widespread. Some of these nuclei are 
‘silent’ (Ho, Filippenko & Sargent 2003). With 
Chandra we can now explore the emission 
properties of these low-activity and silent 
supermassive black holes down to luminosities 
typical of X-ray binary emission; we can also set 
constraints on the hot fuel available for accretion 
and examine the surrounding hot interstellar 
medium for evidence of past outbursts of activity 
(Fabbiano et al. 2003, 2004b, Jones et al. 2002). 
Fig. 5 shows four of these silent nuclei (Soria et 
al. 2005). All these early-type galaxies by 
selection have measured nuclear masses, and 
stringent upper limits on optical line and radio 
emission.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 5 – Four examples of Chandra images of 
silent supermassive black holes (Soria et al. 2005) 
 
The sources we detect with Chandra have 
luminosities in the range 1038-1039 erg s-1 and tend 
to be associated with extended emission, from 
which an estimate of the Bondi accretion 
parameters can be derived. In these nuclei (see 
also Fabbiano et al. 2004b; Pellegrini 2005), 
accretion must be inefficient, but ADAF 
accretion, fueled by both the hot ISM and by 
stellar out-gassing, can explain the emission. 

Cyclic activity and outflow cycles (e.g., Binney & 
Tabor 1995; Ciotti & Ostriker 2001) may avoid 
accumulating large amounts of material in the 
immediate surroundings of the black holes. 
 
Why does a black hole awaken? It is not clear. 
Galaxy interaction and merging have been 
suggested in the past as triggers of activity, but 
there isn’t yet a strong statistical evidence of this 
effect. Recent X-ray observations have provided 
evidence of nuclear activity in strongly interacting 
galaxies, suggesting that at least in some cases 
interaction does indeed facilitate nuclear 
accretion. NGC6240 is a particularly impressive 
example (Komossa et al. 2003). In this late 
merger galaxy two X-ray hard nuclei have been 
found with Chandra ACIS, and their spectra 
show clear Fe K emission lines. 
 
If AGN activity is intermittent, perhaps resulting 
from a feedback cycle (e.g., Ciotti & Ostriker 
2001), some evidence of past outbursts may be 
present in the hot ISM. The spiral-like feature in 
NGC4636 could be such a remnant (Jones et al. 
2002), and so perhaps could be a faint elongated 
structure in NGC821 (Fabbiano et al. 2004b). In 
NGC5128 (Cen A), a huge gaseous ring 
perpendicular to the jet was discovered with 
Chandra. Its properties are consistent with it 
being shock heated gas from a past nuclear 
outburst, possibly connected with the recent 
merger event in Can A (Karovska et al. 2002; fig. 
6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 – In blue is the X-ray emission of 
NGC5128 detected with Chandra. Note the jet 
and the ‘hot ring’ surrounding the nucleus (from 
Karovska et al. 2002). 
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4. HOT WINDS AND THE ECOLOGY OF 
THE UNIVERSE 
 
Starting with the first Einstein observations (see 
Fabbiano 1989) it was clear that hot gas and 
galactic winds are present in actively star-
forming galaxies, such as M82 and NC253 in the 
nearby universe. Through these winds the star-
forming galaxies will influence their 
environment, increasing its entropy, and also 
depositing newly formed elements into the 
intergalactic medium. Understanding these 
winds is therefore important if we want to fully 
understand the ecology of the universe. 
 
With Chandra and XMM-Newton we can now 
get a significantly deeper understanding of these 
hot gaseous components. I will concentrate here 
on a recent example, resulting from the deep 
Chandra observations of the Antennae galaxies 
(NGC4038/39), the prototypical galaxy merger. 
This system was observed with Chandra ACIS 
for 411 ks. resulting in a spectacular data set (fig. 
7, Fabbiano et al. 2004a). The hot ISM of the 
Antennae is discussed in detail by Baldi et al. 
(2005a, b; see also this conference), so I will not 
talk about it here. I will instead discuss the still 
mysterious large-scale features seen in this hot 
ISM, extending well beyond the optical bodies of 
the merging galaxies. These giant loops extend 
for ~10kpc to the south of the Antennae, and are 
embedded in lower surface brightness diffuse 
emission, that can be traced out to 20 kpc. The 
loop temperature, from the Chandra data, is ~0.3 
+/- 0.02 keV,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 – Deep Chandra image of the Antennae 
(NGC4038/39), Fabbiano et al. (2004a) 

 
significantly larger that the that of the more 
diffuse halo (0.23 +/- 0.02 keV), possibly 
suggesting adiabatic cooling and an expanding 
halo or wind. We do not know what causes these 
loops, nor what their future evolution will be. 
Two possibilities are starburst-blown bubbles or 
merger-induced shocks. From an energy budget 
point of view, there is plenty of supernova 
energy deposited in the starburst to cause 
superbubbles. Given the parameters of the 
merger, the loops could be propagating with a 
velocity of 100-1000 km s-1, to be compared with 
a sound speed of ~200 km s-1. So it is possible 
that the loops are due to shock-heated gas, but 
good spectral data are missing. The Chandra 
ACIS data do not have the necessary signal to 
noise ratio to discriminate among different 
options. In particular, if the loops are 
superbubbles, one would expect a cooler interior 
(Castor, McCray & Weaver 1975). If they are 
outwardly propagating shocks, the outer rim 
should be cooler. A deep XMM-Newton 
observation would answer these questions. 
 
The loops could be the result of merger 
interactions. With accurate temperature and 
density maps one could attempt a comparison 
with model simulations (e.g., Barnes 2004). The 
Chandra data do not provide enough statistics 
for a detailed spectral mapping of these features, 
but a deep XMM-Newton observation could. 
 
Deep XMM-Newton data could also address the 
physical status of the diffuse halo (in equilibrium 
or expanding), and its metal content. Since we 
have learned from the deep Chandra observation 
that the hot ISM of the Antennae is metal 
enriched by SNII events (see Baldi et al. 2005a, 
b), it would be important to measure the metal 
content of the halo, and compare it with the 
metal production in the starburst, because this 
would provide prima facie evidence of how the 
transport of metals in the intergalactic medium 
may occur. Obtaining a spectral map of the halo, 
which would be possible with XMM-Newton, 
would also address crucial questions for the 
physical status and evolution of the halo. In 
particular, is the central entropy raised as in 
galaxy groups (Lloyd-Davies, Ponman & 
Cannon 2000)? Is the profile at large radii steep 
and cooler, suggesting winds? We expect that the 
Antennae will eventually evolve into an elliptical 
galaxy. Since the mass in the halo is comparable 
to the amount of diffuse hot gas detected in X-
ray faint E and S0 galaxies, and the cooling time 
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is long (Fabbiano 2004a), this type of deep data 
would provide unique constraints on models of 
halo development in elliptical galaxies. 
 
Concluding, X-ray observations have discovered 
a hot gaseous component in galaxies and are now 
beginning to reveal the physical status and 
chemical composition of this component. This 
hot component needs to be included in any 
simulation of galaxy and merging evolution. 
 
5. PROSPECTS FOR INVESTIGATING 
GALAXY AND BLACK HOLE 
FORMATION 
 
We are now witnessing a revolution in the study 
of galaxies in X-rays. We have progressed from 
the discovery and characterization phase to using 
the X-ray window as an important part of our 
understanding of the evolution of galaxies. 
Given the connection between HMXB 
populations and star formation in galaxies, 
illustrated by X-ray population studies of 
galaxies with Chandra, deep X-ray observations 
give us a means to measure directly the star-
formation rate in the deep universe (e.g., Ranalli, 
Comastri & Setti 2003; Grimm, Gilfanov & 
Sunyaev 2003). With Chandra’s high-resolution 
telescope we can directly study the interaction 
and feedback between nuclear black holes and 
the host galaxies, an important ingredient in 
present day cosmological simulations (e.g., 
Granato et al. 2004; Okamoto et al. 2005). 
Moreover, X-ray observations of the hot gaseous 
component of galaxies have demonstrated that 
gravity is not the only important force in galaxy 
formation and evolution. Mergers shock-heat the 
ISM/IGM and increase its entropy. SN, active 
nuclei, and perhaps dark jets in X-ray sources all 
alter the energy budget by heating the ISM, and 
producing galactic winds. Stellar evolution 
enriches these winds with chemical elements, 
and therefore alters the chemistry of the universe 
at large. X-ray observations provide a direct 
observational window into these phenomena. 
 
Although XMM-Newton has and will contribute 
substantially to this progress, the sub-arcsecond 
resolution of Chandra has been the true catalyst 
of this revolution. It is Chandra’s resolution, and 
the resulting sensitivity, that has allowed the 
detections of samples of X-ray sources d’wn to 
Galactic XRB luminosities in galaxies more 
distant than the Virgo Cluster; these samples of 
X-ray sources have permitted X-ray population 
studies, providing a probe of the evolution of X-

ray binaries in a variety of different 
environments, and have led to the detection of 
extreme sources, such as ULXs, in copious 
numbers. It is Chandra’s resolution, and the 
associated spectral capabilities, that have 
allowed the separation of point like sources and 
hot diffuse emission in galaxies, leading to the 
discovery of metal enrichment in these gases. 
Finally, it is this resolution that has made 
possible the study of the faintest reaches of 
nuclear activity. 
 
While Chandra is beautiful, it is a small 
telescope, and this means that forbiddingly long 
exposure times are needed to exploit some of 
these results to the full. For example, a dedicated 
week of exposure time was needed to obtain the 
beautiful data on the Antennae that I have shown 
in this talk. Evolution is only inferred by 
stacking data on the positions of Hubble deep 
image galaxies, because individual high redshift 
galaxies cannot be detected with Chandra 
(Lehmer et al. 2005). There is, however, 
recognition of the potential of X-ray astronomy 
for studies of cosmology and galaxy and black 
hole evolution. This recognition has resulted in 
the Generation-X proposal, approved for study 
by NASA, for a very large future X-ray telescope 
(~100 square meters mirror), with 0.1 arcsecond 
resolution.  This telescope will not be deployed 
before 2025. 
 
But this is far away in the future. As a 
community, we should make sure that this 
resolution is not lost once Chandra stops 
operating, and that future larger telescopes match 
or even surpass it. Unfortunately, there are no 
planned missions (either by NASA or by ESA) 
that will carry the legacy of Chandra forward in 
the near or foreseeable future. I see this as a 
serious problem not only for X-ray astronomy, 
but also for astronomy as a whole.   
 
 
  
This work was partially supported under NASA 
contract NAS8-39073 (CXC). 
Some material was also covered in a review talk 
delivered at the COSPAR Colloquium “Spectra 
and Timing of Compact X-ray Binaries”, held in 
Mumbai (India), January 17-20, 2005, and in a 
review talk delivered at the IAU Symposium 230 
“Populations of High Energy Sources in 
Galaxies” held in Dublin (Ireland), August 15-
19, 2005. 
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