

The Kavli Institute for Astronomy and Astrophysics at Peking University 北京大学科维理天文与天体物理研究所

CXB surface brightness fluctuations: A new frontier of ICM structure & outskirts studies of (un)resolved galaxy clusters

Speaker	Alexander Kolodzig (Kavli-Fellow at KIAA/Peking University) For hire from 10/2018 ;-)
Collaborators	Marat Gilfanov (MPA,IKI) Gert Hütsi (Tartu Observatory, Estonia) Rashid Sunyaev (MPA,IKI)
Publications	1 st published in MNRAS (01/2017), 2 nd submitting in July! ;-)
Meeting	"The X-ray Universe 2017", Rome, Italy, Th.08.06.2017

Intro

Resolved cosmic X-ray background (CXB) (ROSAT All-Sky survey)

Extragalactic CXB: Resolved Fraction

~75% resolved into point sources for 0.5-2.0 keV (> ~10⁻¹⁷ erg/s/cm²):

~**70%** AGN

~3% Normal Galaxies

→ Resolved CXB shows the formation and accretion history of SMBHs over cosmic time

Extragalactic CXB: Unresolved Fraction

LSS study with the ICM - Kolodzig et al.

Unresolved/diffuse CXB contains unique information!

Extract information via angular correlation analysis?

ROSAT PSPC All-Sky: (Trumper 1990, Freyberg+1999, MPE)

Studying source populations in the (un)resolved CXB with angular correlation studies

- Point sources:
 - AGN (active galactic nuclei) → very successful!

(e.g. Scheuer 1974; Hamilton & Helfand 1987; Shafer & Fabian 1983; Barcons & Fabian 1988; Soltan & Hasinger 1994; Vikhlinin & Forman 1995; Miyaji & Griffiths 2002, Cappelluti+2012,+2013, Helgason+2014, Mitchell-Wynne+2016)

- Extended/Diffuse sources:
 - Galaxy clusters (ICM) → feasible?
 - Warm Hot Intergalactic Medium (WHIM) → feasible?
 - − Galactic emission → feasible?

Our Data

Our Data: ~9 deg² XBOOTES survey

Unresolved CXB of XBOOTES

Total extragalactic emission consistent with previous studies (1.0 - 2.0 keV)

LSS study with the ICM - Kolodzig et al.

Unresolved extragalactic components (0.5 - 2.0 keV)

LSS study with the ICM - Kolodzig et al.

Analyze Technique

Angular correlation studies with the CXB

08.06.2017

Data reduction:

Computing *Mosaic* Power Spectrum:

LSS study with the ICM - Kolodzig et al.

Computing stacked Power Spectrum:

Application:

study smallest angular scales (<17') Advantage to Mosaic:

much faster and simpler to compute

Results

LSS study with the ICM - Kolodzig et al.

LSS study with the ICM - Kolodzig et al.

PSF-Smearing

FOV of Chandra

 PSF-Smearing increases with off-set angle

LSS study with the ICM - Kolodzig et al.

LSS study with the ICM - Kolodzig et al.

LSS study with the ICM - Kolodzig et al.

LSS signal of unresolved CXB

LSS study with the ICM - Kolodzig et al.

LSS signal of unresolved CXB

(Point source shot noise subtracted power spectrum)

LSS study with the ICM - Kolodzig et al.

Assessment of systematics (see Kolodzig+2017a)

- Quiescent instrumental background \rightarrow negligible
- Instrumental background flares → negligible
- Mask effects → minor effect on largest scales
- PSF-Smearing Model \rightarrow not important for large scales (>3")
- Residual counts of removed point-sources \rightarrow negligible
 - Can be modeled with good knowledge of PSF
- Point source shot-noise estimate \rightarrow sufficiently accurate (at given S/N)
- Photon-shot-noise estimators → not important for large scales (>2")

LSS signal: Observational evidence

LSS Signal does **not** depend on point sources!

Fractions of removed resolved point sources

LSS Signal depends on galaxy clusters !

LSS study with the ICM - Kolodzig et al.

Removing fractional area of resolved clusters

LSS study with the ICM - Kolodzig et al.

Removing fractional area of resolved clusters

LSS signal: Theoretical evidence

LSS signal of resolved clusters

Get LSS signal of resolved clusters

LSS study with the ICM - Kolodzig et al.

LSS signal: unresolved CXB vs. resolved clusters

LSS study with the ICM - Kolodzig et al.

Break in LSS signal of resolved clusters

LSS study with the ICM - Kolodzig et al.

Break in LSS signal of resolved clusters

LSS study with the ICM - Kolodzig et al.

Redshift and luminosity dependence

LSS study with the ICM - Kolodzig et al.

Energy Spectrum of LSS signal

LSS signal: Unresolved CXB & resolved clusters

LSS study with the ICM - Kolodzig et al.

Energy Spectrum of CXB fluctuations Resolved clusters

Energy Spectrum of CXB fluctuations Resolved clusters

Using L-T-Relation of **Giles+2015** (XXL)

→ method works reliable!

LSS study with the ICM - Kolodzig et al.

APEC: z=0.40, T=1.3keV N_H=10²⁰cm² , Metal Abundance 0.3

Inconsistent with Powerlaw Γ <3 (expected from AGN & normal galaxies)

Inconsistent with unabsorbed APEC (expected from Galactic emission)

APEC: z=0.40, T=1.3keV N_H=10²⁰cm², Metal Abundance 0.3

LSS study with the ICM - Kolodzig et al.

 $N_{H}=10^{20}$ cm², Metal Abundance 0.3

- Flux weighted z~0.35
- Median Mass $M_{500} \,\text{\sim}\, 10^{13.5} \; M_{Sun}$
- $T_{\rm ICM}$ ~ 1.1keV based on L~10^{42.3} erg/s

→ Strongest evidence for the origin of the LSS signal!

WHIM: No observational evidence!

Removing filaments has no effect

LSS study with the ICM - Kolodzig et al.

Summary

Full description of CXB fluctuations below 3°

LSS study with the ICM - Kolodzig et al.

Summary

Surface brightness fluctuations of the CXB with XBOOTES:

- LSS signal (for >2'):
 - Resolved source retained:
 - Amplitude and negative slope increases for extended sources
 - no change for point sources (not shown)
 - Energy spectrum:
 - in agreement with expectations from (un)resolved galaxy cluster & groups
 - no agreement with extragalactic power law nor with galactic thermal emission
 - Clustering models (preliminary):
 - Shape in reasonable agreement with 1-halo-term of (un)resolved galaxy cluster & groups
 - Possible signal of cluster substructure
 - Signal of resolved clusters: sensitive up to outskirts!
 - No agreement with AGN 2-halo-term

→ Conclusion: LSS signal originates from the ICM of (un)resolved galaxy clusters & groups

No evidence for signal of WHIM at given S/N

Application: New tool to study the ICM structure of galaxy cluster & groups up to the outskirts

Great potential for large surveys, e.g. Stripe 82X, XXL, SRG/eRosita all-sky survey !

Outlook: using CXB angular correlations analysis for ICM structure studies

Pro's:

- Unique access to faint & low-luminosity sources
- Survey area more important than survey depth \rightarrow ideal for XXL and eRASS!
- No requirement of other data (but appreciated)
- Study large source population at once (and simpler than stacking)
- Measure entire gas profile from core to outskirts (>R₅₀₀)
- "Simple" treatment of fore- & background CXB components
- "Simple" treatment of BKG (on scales above FOV)
- redshift information optional (use XLF instead)

Features:

- Energy-resolved study feasible
- SZ cross-correlation has great potential too

Con's:

- Require large survey area (>9deg²) with relative homogenous depth
- Spatial variation of inst. BKG may be important (on scales below FOV)
- Difficult to use for individual sources (need to be bright and nearby)
- For unresolved sources:
 - No direct measurement of properties
 - Rely on XLF and scaling relations
- Modeling challenging
 - many theoretical unknowns
 - Measure one- and two-halo term simultaneously at best

Backup

Energy Spectrum of unresolved emission (0.5 - 10.0 keV)

