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AGN feedback * and many more
e.g. Fabian+2012 e.g. cosmic ray heating,
weak shocks bubble mixing, radiative

turbulent e e
&Sound waves diSSipation eating, turbulent mixing ...

e.g. Fabian+2003,

e.g. Zhuravleva+2014
Forman+2007
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turbulent
dissipation




What is the role
of turbulence

in AGN feedback
IN glant galaxies?

Werner+2009
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Resonant scattering

low velocities substantial velocities
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See also Kosuke Sato-san's talk

Gilfanov+1987, Shigeyama+1998,
Sazonov+2002, Churazov+2010
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projected flux ratio
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projected flux ratio
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Resonant scattering modelling
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Resonant scattering
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Resonant scattering vs line broadening
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Resonant scattering AND line broadening
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Turbulent velocity measurements
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Turbulent velocity measurements

IN @ sample of galaxies
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Non-thermal pressure support
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Non-thermal pressure support

NGC4636
NGCbH813 —
NGC1316
NGC4374
NGC1404 -

—— most probable sample value

NGC3411

NGC4261
NGC4325

NGC4552

/€ ~ 0%

& thermal

turb

NGC4649
NGC4761
NGC5044 -

NGC5846

within < 10 kpc
(typically ~ 3-5 kpc)

0 10 20

Hitomi Perseus: aturb/ £

thermal

~ 4-8%, Inner ~30 KpC Hitomi Collab. 2016



Can turbulence heat galaxy cores?



Can turbulence heat galaxy cores?

> IS Qturb:Qcool ? erb V] k
> What are the spatial scales of motions?

(Effective length? RGS aperture width?)



Can turbulence heat galaxy cores?

> IS Qturb:Qcool ? Qturb V] k
> What are the spatial scales of motions?

(Effective length? RGS aperture width?)

> Typically in our sample turbulent heating is
sufficient to offset the radiative cooling

V~110 km/s, L ~5kpc= M_  ~0.42
Mobs.NO'44




Main uncertainties and assumptions

> Atomic data/ plasma codes
PSF of RGS and source spatial extent

\Y

Abundance profiles

|sotropy of motions

Spherical symmetry of galaxies
Kolomogorov spectrum of turbulence

v V. VvV V




Future: possibilities with RGS

> Unique science achievable only with RGS

> More RGS observations will allow to:
o Measure velocities close to the black hole
o Understand spatial scales of turbulence
o Constrain presence of any velocity trends
in the sample



normalized counts [s ! keV !

Future:

Hitomi, 100 ks

normalized counts [s™! keV~!]

Athena, 10 ks

7
6 4 —— model, no RS - 800 4 —— model, no RS B
5 4 == model, with RS M=0.45 | — = model, with RS M=0.45
44 - simulated spectrum, no RS — 500 =+ simulated spectrum, no RS i
34 ~+ simulated spectrum, with RS — 100 4 simulated spectrum, with RS I
. [ 200 -
0 = 0 - '

T T T T T T T T T T T T
0.800 0.805 0.810 0.815 0.820 0.825 0.830 0.835 0.800 0.805 0.810 0.815 0.820 0.825 0.830 0.835

energy [keV] energy [keV]

. . . i ) Ogorzalek+2017
Typical velocity broadening in galaxies:

~0.3 eV
Athena's resolution: ~2 eV



anna.ogorzalek@stanford.edu

Conclusions

Our measurements of turbulence in 13 massive
galaxies show a common velocity of ~110 km/s
Turbulence is typically sufficient to offset radiative
cooling in galactic cores

To study heating and AGN feedback in detail we need
more RGS observations, better understanding of
spatial scales of motions, and more precise atomic
data

Resonant scattering serves as an important velocity
probe, especially in galaxies, and is crucial for correct
interpretation of future high resolution X-ray spectra



Thanks!



