

The hard X-ray stable emission in MCG-06-30-15

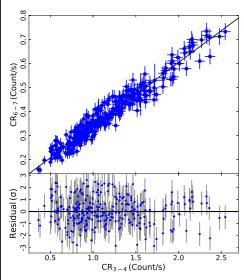
E. Kammoun¹ & I. Papadakis ²

¹SISSA, Trieste - Italy (ekammoun@sissa.it); ²University of Crete, Heraklion - Greece (Kammoun & Papadakis, 2017, Submitted to MNRAS)

Objective

X-ray spectra of Active Galactic Nuclei (AGN) are mainly characterised by two emission components: 1) a variable primary power-law (PL) component and 2) a reflection component due to the interaction of the primary emission with the accretion disc and/or distant neutral material. Many AGNs reveal a large variability driven mainly by the primary. However, the reflection component is thought to be more stable. The aim is to extract the stable component in a model-independent fashion by means of a variability analysis.

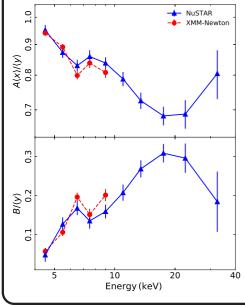
Method


We apply the flux–flux plot (FFP) method to the 3 archival simultaneous XMM-Newton & NuSTAR observations ($\Delta t_{\rm obs} \simeq 400\,{\rm ks}$) of the Seyfert 1 galaxy MCG–6-30-15.

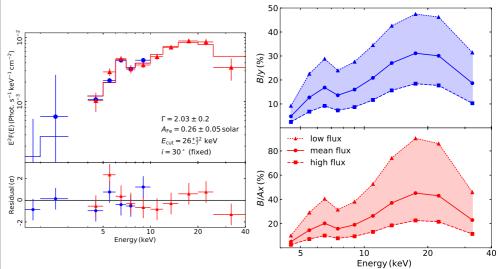
- 1. The 3–4 keV band was chosen as a proxy of the continuum power-law emission.
- 2. The 4–40 keV band, hereafter $high\text{-}energy\ band,$ was divided into 10 energy sub-bands.
- 3. Light curves in the 11 sub-bands were binned with a time bin size $\Delta t_{\rm bin}=1\,{\rm ks}.$
- 4. We plot the "high-energy" vs the "primary" band count rates (FFP). They are highly correlated, in all energy bands.

FFP analysis

The FFPs are well-fitted with a linear relation-ship:


$$y = Ax + B; \quad B > 0$$

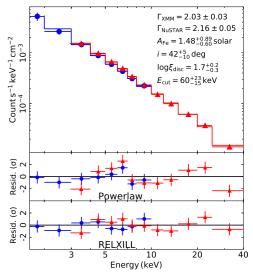
The FFPs extracted from the various observations all followed a linear relationship.


⇒ The variality **cannot** be due to variations of the number and/or the covering factor of absorbing clouds in the LOS.

The best-fit A's and B's, from both XMM-Newton and NuSTAR were consistent.

Constant neutral reflection

The spectrum of the constant component B(E) is well-fitted with a neutral reflection model PEXMON and can account for $\sim 40-50\%$ of the emission in the 15–30 keV band, at the low-flux state of the source.



The variable component

We defined the the average spectrum of the variable component as follows:

$$\langle y \rangle_{\text{var}} = A \langle x \rangle$$

- \bullet By fitting the spectrum with only a power-law model, the fit was bad ($\chi^2/{\rm dof}=30/15)$ with systematic residuals suggesting the presence of a reflection component (i.e. Fe line in the 6–7 keV range, and an excess at $\sim 20\,{\rm keV}).$
- The fit improved statistically with a powerlaw plus ionized reflection XILLVER, but the parameters are not constrained.
- Using relativistic reflection model (RELXILL) we got $\chi^2/\mathrm{dof}=10.8/11$, with constrains on all the parameters.

Conclusions

Our results show the presence of a stable component in the X-ray spectrum of MCG-6-30-15 that is consistent with a neutral reflection from distant material located at D > 4.6 light days. We could also extract the variable spectral component that is consistent with a primary power-law emission (with a constant $\Gamma \sim 2$) plus relativistic reflection varying within less than 1 ks.