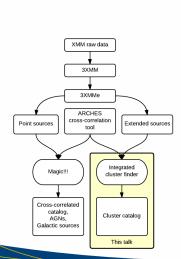


ARCHES Integrated cluster finder

Alexey Mints, Axel Schwope and the ARCHES consortium

Leibniz-Institut für Astrophysik Potsdam (AIP), Germany


June 18, 2014

What is ARCHES

Astronomical Resource Cross-matching for High Energy Studies.

3XMMe – the heart of ARCHES

3XMM

- 3.2 years of data added after 2XMMi;
- ▶ 794 deg²;
- $ightharpoonup \sim 530000 \ detections/\sim 370000 \ sources$

3XMMe – the heart of ARCHES

3XMM

- 3.2 years of data added after 2XMMi;
- ▶ 794 deg²;
- $ightharpoonup \sim 530000$ detections/ ~ 370000 sources

3XMMe

- \sim 250000 sources (\sim 340000 detections) with highest quality;
- Flags to mark sources as candidates for science themes (galactic, AGN, clusters);
- Flag to indicate where detections lie in fields affected by bright stars or galaxies;

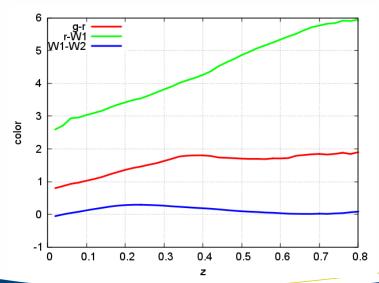
ARCHES Integrated cluster finder

Goal Search for galaxy clusters and estimate their parameters (redshift, size, X-ray parameters) in multi-wavelength photometric and spectroscopic data, using X-ray information on the expected cluster positions.

Data Following catalogs are used (so far): SDSS DR9, CFHTLS (Deep and Wide), UKIDSS LAS DR9, AllWISE.

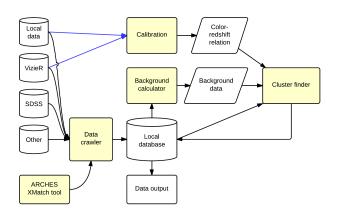
Spectra Spectroscopic data used: BOSS, VIPERS.

Future VHS, VIKING, DES, Pan-STARRS, PhotoZ surveys (SWIRE, ALHAMBRA etc.)



Cluster finder basics

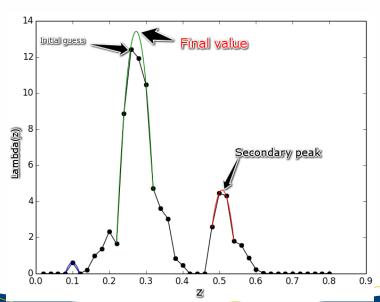
- Utilize color-redshift relation to estimate redshift
- ► Use optical AND infrared colors to increase precision ⇒ we need a cross-match tool (ARCHES Xmatch)
- Use spectral observations to calibrate color-redshift relation.
- Estimate background and spurious detection probability.
- ► Inputs: position (X-ray source coordinates), luminosity function, density profile.
- Outputs: redshift, multiplicity, BCG position.



Color-redshift relation

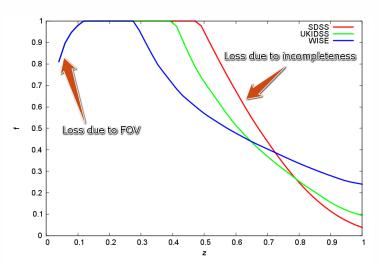
Data flow

Multiplicity function $\lambda(z)$


$$\lambda(z) = \sum_{r < R_{max}(z)} \frac{\lambda(z)u(z,x)}{\lambda(z)u(z,x) + b(z,x)}$$

where x is a vector containing color and positional information, u – cluster profile, b – background.

$$R_{max}(z) = min(R_{1Mpc}(z), 8')$$



Peak finding

Completeness

Reference dataset: Takey et al. 2013

Astronomy & Astrophysics manuscript no. aa20213-12 September 2, 2013 © ESO 2013

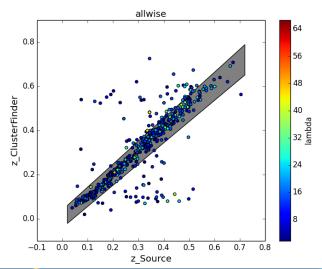
The 2XMMi/SDSS Galaxy Cluster Survey

II. The optically confirmed cluster sample and the $L_{\rm X}$ – T relation*

A. Takey^{1,2}, A. Schwope¹, and G. Lamer¹

- 2XMM SDSS DR8 data;
- ▶ 530 clusters identified:
- 75% new X-ray clusters;
- 310 with spectroscopic redshifts of at least 1 member;

X-ray positions were used as input.


¹ Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany e-mail: atakev@aip.de

National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo, Egypt

State of the art: ICF vs. Takey

85% have $|z_{icf} - z_{input}| < z_{err}$

Development status and plans

Status

- \sim 1500 X-Ray sources flagged for cluster science in 3XMMe.
- \sim 900 in SDSS DR9 footprint.
- \sim 600 "good" detections.

Plans

Cluster finder and cluster catalog – to be ready by end of June 2014.

2nd part of the project – scaling relations ($L_X - T$). Catalog public release – July 2015.

Removed from 3XMMe:

- Bad mosaics, high background, hotspots
- ► Offaxis sources (> 12′)
- Low exposure observations

3XMMe cluster sources

- Extended sources with low extent error
- High galactic latitude ($|b| > 20^{\circ}$)
- ▶ 4' < Offaxis < 12'
- High detection likelihood