The X-ray Universe 2014 – Dublin

Measuring the strongest magnetic fields in the Universe

Andrea Tiengo

IUSS Pavia; INAF-IASF Milano; INFN Pavia

P. Esposito, S. Mereghetti, R. Turolla, L. Nobili, S. Zane, N. Rea, L. Stella, G.L. Israel, F. Gastaldello, D. Götz, G.F. Bignami

The low B magnetar SGR 0418+5729

- Two **BURSTS** detected on 2009 June 05, spin **PERIOD** of 9.1 s (van der Horst et al. 2010)
- Apparently all the features of a (transient) SGR
 - Large flux increase and decay
 - Emission of bursts
 - Period in the SGR/AXP range (2-12 s)
- Small PERIOD DERIVATIVE (4X10⁻¹⁵ s s⁻¹, *Rea et al. 2013*)
 - ⇒ $B_{dip} \approx 6 \times 10^{12} \text{ G} \Rightarrow a \text{ LOW MAGNETIC FIELD magnetar?}$
- Consistent with magnetar model if born with higher B field and INTERNAL (crustal) B > 10¹⁴ G (*Rea et al. 2010; Turolla et al. 2011*)
- Strong MULTIPOLAR field components on the surface from spectral analysis with NS atmosphere model (*Güver et al. 2011*)

The importance of being twisted

The internal **TOROIDAL** *B* produces the crustal displacements responsible for the bursting/outbursting episodes in AXPs/SGRs

(Thompson & Duncan 1995; Thompson et al 2002; Beloborodov 2009)

Another "anomaly" of SGR 0418+5729

XMM-Newton/EPIC

2009 August 12

0.3-1 keV

Swift/XRT (WT mode) 2009 July 12-16

Spectra from adjacent phase intervals: absorption line at ~2 keV?

Indications for a **PHASE-VARIABLE** spectrum

An ABSORPTION LINE at a phase-variable energy

XMM-Newton/EPIC phase-energy image

XMM-Newton/EPIC phase-energy image

Normalized to the phase-averaged spectrum AND the energy-integrated pulse profile

Detected in earlier RXTE and Swift data

- Line is **NOT** due **INSTRUMENTAL** effects
- Line has been present since the **BEGINNING** of the outburst

Phase-resolved spectral analysis

50 PHASE RESOLVED EPIC PN SPECTRA

- At most phases: acceptable fits by RESCALING the model of the phase-averaged spectrum
- At phases ~0.1-0.3 and ~0.5-0.6: acceptable fits with the addition of an ABSORPTION LINE

- $E_{cycl,p} = 0.6 B_{14} \text{ keV} \Rightarrow B \sim (2-20) \times 10^{14} \text{ G} \Rightarrow \text{MAGNETAR}$ field
- We need a **STRONGLY VARIABLE B**, that might vary:
 - along the SURFACE (small-scale multipolar B components)
 OR
 - ✓ along a VERTICAL plasma structure (coronal loop analogy; e.g., Beloborodov & Thompson 2007; Masada et al. 2010)

- $E_{cycl,p} = 0.6 B_{14} \text{ keV} \Rightarrow B \sim (2-20) \times 10^{14} \text{ G} \Rightarrow \text{MAGNETAR}$ field
- We need a **STRONGLY VARIABLE B**, that might vary:
 - along the SURFACE (small-scale multipolar B components)
 OR
 - ✓ along a VERTICAL plasma structure (coronal loop analogy; e.g., Beloborodov & Thompson 2007; Masada et al. 2010)

- $E_{cycl,p} = 0.6 B_{14} \text{ keV} \Rightarrow B \sim (2-20) \times 10^{14} \text{ G} \Rightarrow \text{MAGNETAR}$ field
- We need a **STRONGLY VARIABLE B**, that might vary:
 - along the SURFACE (small-scale multipolar B components)
 OR
 - ✓ along a VERTICAL plasma structure (coronal loop analogy; e.g., Beloborodov & Thompson 2007; Masada et al. 2010)

- $E_{cycl,p} = 0.6 B_{14} \text{ keV} \Rightarrow B \sim (2-20) \times 10^{14} \text{ G} \Rightarrow \text{MAGNETAR}$ field
- We need a **STRONGLY VARIABLE B**, that might vary:
 - along the SURFACE (small-scale multipolar B components)
 OR
 - ✓ along a VERTICAL plasma structure (coronal loop analogy; e.g., Beloborodov & Thompson 2007; Masada et al. 2010)

- $E_{cycl,p} = 0.6 B_{14} \text{ keV} \Rightarrow B \sim (2-20) \times 10^{14} \text{ G} \Rightarrow \text{MAGNETAR}$ field
- We need a **STRONGLY VARIABLE B**, that might vary:
 - along the SURFACE (small-scale multipolar B components)
 OR
 - ✓ along a VERTICAL plasma structure (coronal loop analogy; e.g., Beloborodov & Thompson 2007; Masada et al. 2010)

- $E_{cycl,p} = 0.6 B_{14} \text{ keV} \Rightarrow B \sim (2-20) \times 10^{14} \text{ G} \Rightarrow \text{MAGNETAR}$ field
- We need a **STRONGLY VARIABLE B**, that might vary:
 - along the SURFACE (small-scale multipolar B components)
 OR
 - ✓ along a VERTICAL plasma structure (coronal loop analogy; e.g., Beloborodov & Thompson 2007; Masada et al. 2010)

A simple proton cyclotron model

A toy-model with simple geometry and magnetic field intensity linearly decreasing with loop width can explain the line variability with phase

Other claims of lines in magnetars

Tentative **CYCLOTRON** lines in persistent and burst emission

AXP/SGR	Line energy (keV)	Significance (σ)	Satellite/ Instrument	Notes
1E2259+586	5,10	-	GINGA/LAC	PPS, absorption
SGR1806-20	5,7.5,11.2,17.5	3.3	RossiXTE/PCA	Burst, absorption
4U0142+614	4,8,14	-	RossiXTE/PCA	Bursts, emission
1E1048-5937	14;13	3.9;3.3	RossiXTE/PCA	Bursts, emission
XTE1810-197	12.6	4.5	RossiXTE/PCA	Burst,emission
1RXS1708-4009	8.1	2.95	BeppoSAX/MECS	PPS, absorption
SGR1900+14	6.4	3.7	RossiXTE/PCA	Burst, emission

NOT confirmed by XMM/Chandra, but ~13 keV emission line in 1E 1048-5937 burst tail with *NuSTAR* (*An et al., arXiv:1406.3377*)

Conclusions

(Tiengo et al. 2013, Nature 500, 312)

- Discovery of **ABSORPTION LINE** with strong energy **VARIABILITY** with phase, **UNPRECEDENTED** among neutron stars (including accreting pulsars)
- If PROTON CYCLOTRON line ⇒ B > 2x10¹⁴ G ⇒ additional confirmation of magnetar nature of SGR 0418+5729 and of the overall MAGNETAR MODEL
- Low dipolar component of B from low spin-down rate and line phase variability ⇒ strong MULTIPOLAR magnetic field components ⇒ impact on GWs emission from magnetars (Mastrano et al. 2013)

Work in progress and future prospects

- Similar analysis on archival data of **OTHER MAGNETARS** (mainly XMM-Newton, RXTE, NuSTAR data)
- More work on loop/arcade MODELS

 Better sensitivity to phase-variable lines in magnetars with ATHENA

