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General Properties of Magnetars

Characterized by bright hard X-ray / soft gamma
ray bursts

Slowly rotating systems (Pg,, ~ 2 - 12 s)

Rapidly spinning down (dP/dt~ 10-13 - 10-11 g/s)
Bright X-ray sources (L ~1034-103> erg/s)
Transient magnetars (L ~1032 erg/s in quiescence)

Young systems as deduces from their galactic
locations

Unique X-ray spectral properties




Magnetar Family Picture
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Intermediate Events
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More Intermediate Events
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Giant Flares
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The Magnetar Perspective

A magnetar— neutron star powered by its super-strong
magnetic field (1014 -101> G) can account for the
extraordinary March 5th event: burst energetics,
short-hard spike; 8 s modulation (Duncan &

Thompson 1992) super-Eddington luminosities
(Paczynski 1992)

ROSAT observations of the point X-ray source in N49 >
dissipation of magnetic energy (DT 1992)

DT (1992); Thompson & Duncan (1993): Formation of
magnetars via efficient dynamo if Py~1-3 ms




Bursts via Crust Cracking

B fields are so strong that drifting field lines can
stress and eventually crack the crust (Thompson
& Duncan 1995)

Stress = Shear modulus * Strain
(B2/8n) =nu*6

For NS crust, up ~ 1031 erg/cm3 (Baym & Pines 1971)

Most materials will crack at 6 ~ 10-3

B=25x10°G | * | ¢
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Upper Limit on Magnetar B-fields

Magnetic energy has to be less than the gravitational
binding energy of the neutron star:
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Consequences of Crust Cracking:

Thompson & Duncan 1995:

= Sudden crustal disturbance
would inject magnetic
(Alfven) waves into the
magnetosphere

= Alfven waves would provide
momentum and energy to
produce trapped photon, e-
and e* fireball

When photons escape, e-
and et annihilate and the

fireball radiates and cools,
that is observed as bursts.

(Image by R. Duncan)




Bursts via Reconnection

When brought together,
' oppositely oriented
magnetic field lines
will split and
reconnect in a lower
energy configuration,
and release magnetic

energy (TD 1995,
A B Lyutikov 2003).

(Wikipedia)

Solar flares are bright,
energetic and
observed in X-rays /
soft gamma rays.




Magnetic Field Reconfiguration

(Woods et al. 2001)



Crack Scale and Burst Size

Large scale fracturing =2 Giant events
and possible field reconfiguration

Relatively large size cracking »>
Intermediate events and oscillating
=11

Local cracking = short bursts




Fallback Disk: An Alternative Model

Spin period clustering (Alpar 2000)

X-ray enhancements (Ertan et al. 2003, Caliskan et al. 2013)

IR/Optical emission (Ertan & Caliskan 2006): IR disk around
4U 0142+61: passive (Wang, Kaplan & Chakrabarti 2006),
active (Ertan et al. 2007)

Hard X-ray emission (Trimper et al. 2010)

Energetic bursts cannot be explained with accretion




Reclassification of Magnetars
Based on Their Bursting Behavior

SGR 1900 + 14 SGR 1627 - 42 1E 1048-5937
1E 2259+586

SGR 1806 — 20 SGR 1550 - 5418 4U 0142+61
1E 1841-045
SGR 0526 - 66 SGR 0501 + 4516 CXO J164710.2-
455216
XTE J1810-197

AX J1818.8 - 15597

SGR 0418 + 5729

SGR 1833 - 0832

Swift 1822.3 —1606

Swift 1834.9— 0846

SGR 1745 - 29




SGR Burst Spectra
(Time Integrated)

2 —30keV 15— 150 keV
15— 150 keV

BB + BB BB + BB BB
Compt OTTB Compt
BB + BB
OTTB

Scholtz & Kaspi12  Kaneko et al. in prep. Israel et al. 08 von Kienlin et al. 12
Mereghetti et al. og van der Horstet al. 12
Linetal. 12

Comptonized model (Compt): a single power law with a high E exponential cutoff




Broadband Spectral Studies

SGR 1900+14: The storm, XRT+BAT, 0.5-150 keV (Israel et al. 2008)
SGR J1550-5418 normal bursts, XRT+GBM, 0.5-200 keV (Lin et al. 2012)
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SGR 1550-5418 in 2008 — 2009
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SGR 1550-5418: Oct 08 & Mar 09

22 relatively weak events in
Oct 2008 are best described
with a single blackbody
function.

15 events
seen March
2009 are
better fit with
OTTB
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SGR 1550-5418 in January 2009
GBM only

286 Integrated spectra are well described with BB +
BB, and equally well with the Compt model.
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XRT-GBM Simultaneous Event

42

simultaneous
bursts were
identified in
the January
2009 active
episode
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(Lin et al. 2012)
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Joint spectral fits: BB + BB model fits are significantly

better than the Compt model.




SGR 1550-5418: Broadband Spectral
Analysis

(Lin et al. 2012)




2nd Qutburst of SGR 0501+4516
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1t Qutburst of
SGR 0501+4516
in July 1993

On 1993 July 25, BATSE
triggered on two short and
soft events originating
from similar locations -2
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XMM-Newton View of
SGR 0501+4516

(Lin et al. 2012)

49 ks observation
collected 100s of
short bursts

Crucial to study the
link between low
fluence bursts and
persistent emission

Talk by L. Lin
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Search for QPOs

High frequency QPOs were detected in the data of two giant flares
(Israel et al. 2005; Strohmayer & Watts 2006, ...)

There are thousands of short bursts. Are there hidden oscillations in
short bursts as well?

Huppenkothen et al. (2013): the most rigorous search for QPOs in the
GBM data of 27 SGR 0501+4516 bursts using Bayesian statistics
- no evidence for QPOs in the unbinned specta

- there is a candidate (7 Hz) in the binned spectra of a burst

The candidate can
be due to a quasi
periodic process
or an unmodelled
effect of noise

log variance-normalised power
I

Search in other
R I e el OUI'STS IS ongoing

Time since trigger [s] log FrequencyL['Hz]

(Huppenkothen et al



SGRs with Low Burst Rates
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SGRs with Low Burst Rates

SGR 1822.3-1606 >
By = 2.7x1013 G

(Rea et al. 2012)
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SGRs with Low Burst Rates
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Time since 2013 April 25 19:15:00 UT (seconds)

253

SGR 1745-29

(Kannea et al. 2013)

Bd —_ 3 X 1014 G
(Gotthelf et al. 2013)




SGRs with Low Burst Rates

How can sources with low dipole magnetic fields
(e.g., SGR 0418+5729 or SGR 1822.3-1606)
generate bursts?

XMM — Newton observations of SGR 0418+5729
on 2009 August 12 for 65 (36) ks might have
observational clues.




Surface Thermal Emission and Magnetosphetic
Scattering Model :

(Ozel 2003; Lyutikov & Gavriil 2006;

Guver, Ozel & Lyutikov 2006) 4- General Relativistic
Effects

Scattenng Region

I *. Resonant Cyclotron

v
1- Magnetic field 2 - Rediative equilibrivm maodels for ionized,
dissipation and / or strongly magnetized
Ceoling Hydrogen Armosphere




Surface B-field of SGR 0418+5729

The NS atmosphere models with
B=10"2 G or 10" G do not fit
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STEMS provides a good fit,
yielding B, =1.0x10'* G

This is the phase averaged value,
it can be stronger in local
settings; it is strong enough to
generate bursts
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SGR 1745-29 & SGR 1833—-0832
Flux Decay

X-ray flux of SGR
1745—29 is constant
o i, ;?ﬁ for ~10 days following
LI il the onset
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o~
_I'J‘.
i
-
=1
=
=11}
fuin
1
(=l
i
=
—
et
=
[

Continuous heating of
the crust by trapped
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T4y Of Burst Active Episode

Time since the onset of an outburst during which 90% of all
observed bursts are recorded.

Source T90—BurstActivity

SGR 1550-5418 (2009) 4.6 days
SGR 1627-41 (1998) 4.1 days
SGR 0501+4516 (2008) 3.7 days

SGR 1900+14 (1998) 93 days
SGR 1806—20 (2003/04) very long

Burst active episode of a prolific transient lasts for ~4 days.




Summary

Transient SGRs: prolific vs. low burst rate

SGR burst spectral studies: crucial, especially in
broadband

SGR burst temporal studies: difficult but can be
rewarding

Better understanding of persistent emission and
its link (?) to bursts are critical — XMM-Newton
has been very instrumental
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TOPICS:

Gamma Ray Bursts

¥-ray Pulsars and Magnetars
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COSPAR MOSCOW 2014

COSMOS

40th SCIENTIFIC ASSEMBLY
Russia, Moscow, 2-10 August 2014

E1.12 Highly Magnetized Neutron Stars

Themes:
What is required to produce SGR-like bursts?

Are all high-B NSs different manifestations of the same
underlying objects, or do they represent distinct evolutionary
sequences?




