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The source 

The composite supernova remnant (SNR) G0.9+0.1 is located less than one degree from the 
Galactic Center (GC). The overall radio morphology is dominated by a luminous core with a 
diameter of ! 2" surrounded by a fainter, but still well detectable shell with a diameter of ! 8" 
(Helfand & Becker 1987). X-ray observations with Chandra (Gaensler et al. 2001) and XMM-
Newton (Porquet et al. 2003) unambiguously identified the core of the SNR as a pulsar wind 
nebula (PWN). Gaensler et al. (2001) found an unresolved source (CXOU J174722.8#280915) 
approximately 10” south of the region of brightest emission (see Fig. 1). Due to the high 
sensitivity of XMM-Newton, Porquet et al. (2003) were able to detect faint X-ray emission from 
the shell of the SNR. Dubner et al. (2008) showed that the X-ray PWN almost fills the size of the 
radio core, which indicates a moderate magnetic field (see e.g. Gaensler & Slane 2006). 
G0.9+0.1 has been detected with H.E.S.S. (Aharonian et al. 2005) in very high energy (VHE, E > 
100 GeV) $-rays above 200 GeV. The source exhibits a flux of only 2 % compared to the one of 
the Crab Nebula. For H.E.S.S., it appears point-like, with an upper limit on the intrinsic angular 
extent between 1.3’ and 2.2’, depending on the assumed morphology. In 2009, Camilo et al. 
discovered PSR J1747-2809, the pulsar powering G0.9+0.1. The authors report a strongly 
scattered and dispersed signal with a pulsation period of P = 52 ms. The characteristic age was 
derived as %C = 5.3 kyr and the spin-down luminosity as dE/dt = 4.3 x 1037 erg/s. The high 
scattering of the signal increases the positional uncertainty to about 3’, neither proving nor 
disproving that CXOU J174722.8#280915 is the X-ray counterpart of PSR J1747-2809. 

Fig. 1. Chandra count map of the inner part 
of the PWN containing the point source 
CXOU J174722.8#280915 south of the 
region of brightest emission.    
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to at the termination shock, which are laid out in the same ref-
erence. The first one states that the gyroradius of the charged
particles constituting the pulsar wind must be smaller than the
shock radius RS. When defining ε = RL/RS with RL the gyrora-
dius, the maximum energy of the leptons is given by

Ee,max = εeκ

√

σ

1 + σ
Ė
c
. (4)

In this equation κ denotes the magnetic compression ratio at the
shock and σ the magnetization parameter corresponding to the
ratio of the magnetic and the particle energy outflow. According
to the second limit, a charged particle reaches its maximum en-
ergy when the synchrotron losses become as strong as the energy
gain. This statement can be rewritten to

Ee,max = 43.7 B−1/2S,G erg, (5)

with BS,G the magnetic field strength at the shock in units of G.
The lower value of both constraints is then used as Ee,max.

4.2. Outward Propagation of the Leptons
The radially symmetric model applied to G0.9+0.1 resembles
the one introduced by Schöck et al. (2010). The lepton plasma is
assumed to propagate outwards with a bulk velocity of

v(r) = vS
(RS
r

)α

, (6)

where α is the index of the adopted power law and vS the ve-
locity at the wind termination shock. When combining κ and
σ by defining ξ = κ

√
σ/(1 + σ), the relation for the magnetic

field strength at the shock is given by (Kennel & Coroniti 1984a;
Sefako & de Jager 2003):

BS =
ξ

RS

√

Ė
c
. (7)

Assuming a toroidal magnetic field whose outward propagation
is strongly connected to that of the leptons, the ideal magneto-
hydrodynamic limit on the assumption of a static system yields
(Kennel & Coroniti 1984a):

Bvr = BSvSRS = const. (8)

As the leptons propagate outwards, they suffer energy losses,
leading to a change of the spectral shape. According to
de Jager & Harding (1992), two fundamental energy loss mech-
anisms have to be considered:

dEe
dt
= −

Ee
3
∇· v⊥(r) − 2.368 × 10−3(BEe)2

erg
s
. (9)

In this equation, the first term corresponds to adiabatic energy
losses and can be calculated using Eq. 6. The second term de-
notes the losses due to synchrotron radiation of the leptons.

4.3. Implementation and Photon Emission
For the numerical implementation of the model, we divided the
observed part of the PWN into a large number of concentric
sub-shells in order to simulate the continuous case, just as per-
formed by Schöck et al. (2010). Using the previously described
relations, the lepton injection spectrum is then propagated out-
wards from one sub-shell to the next one.

The emitted synchrotron and IC radiation of the correspond-
ing lepton population can be calculated for each sub-shell. For
this, we used the equations as given by Blumenthal & Gould
(1970). Regarding the IC process, essentially three seed pho-
ton fields are relevant in the case of G0.9+0.1: the CMB com-
ponent, IR photons emitted from local dust and the starlight
component. The CMB spectrum is well described by a black-
body distribution for arbitrary locations. As an approximation of
the IR and starlight components, we used the interstellar radia-
tion fields of Porter & et al. (2005) developed for the GALPROP
code (Strong et al. 2000).

The emission of the sub-shells was summed up to shells with
the same inner and outer radii as chosen for the annuli of the X-
ray analysis.

4.4. Projection Effect
Since the model is three-dimensional, a shell actually corre-
sponds to a hollow sphere. An annulus is therefore merely the
two-dimensional projection of the three-dimensional shells. This
has two major implications. Firstly, only part of the volume of
a shell is visible in the projection represented by an annulus.
Secondly, outer shells add up to an annulus’ emission. The over-
all emission from annulus i is given by

dN
dE

∣

∣

∣

∣

∣

i,Ann
=
∑

j
vi j
dN
dE

∣

∣

∣

∣

∣

j
, (10)

with dN/dE| j the spectrum of shell j. This equation includes the
assumption that the radiation is emitted isotropically and does
not undergo any absorption inside the PWN. The entries of vi j
can be written in a matrix of size n×n. For the chosen extraction
regions from Table 3, n = 4 and the matrix is

v =



























0.82 0.22 0.07 0.03
0 0.74 0.33 0.12
0 0 0.59 0.26
0 0 0 0.59



























. (11)

This means that, for example, a superposition of 74% of the sec-
ond, 33% of the third and 12% of the fourth shell generates the
emission of the second annulus. We added up the modeled emis-
sion from the shells accordingly in order to obtain the resulting
spectra of the annuli. The results can afterwards be compared
with the measured data from XMM-Newton.

4.5. Parameter Optimization
The previously described model allows to calculate the syn-
chrotron emission of the annuli for given parameters RS, η, ξ,
α, and ε. Afterwards the unabsorbed energy flux is computed in
the range of the above-mentioned energy bins for every annulus.
The results are then compared with the measured XMM-Newton
data by calculating the χ2 value. This approach optimizes the pa-
rameters by taking into account the overall energy flux as well as
the spectral shape. The partly correlated parameters are scanned
over the allowed range, searching for a minimum of χ2.

5. Results of the Modeling
We carried out the parameter optimization as described in the
previous section, assuming a distance of d = 13 kpc, following
Camilo et al. (2009). Since the inner radius of the first annulus
is 4 ′′, the upper limit on the extent of the termination shock was
set to the same value.

5

5.2. Outward Propagation of the Leptons

G0.9+0.1 in X-rays deviates from radial symmetry. Nevertheless, such a model is def-

initely an improvement compared to one-zone models which attempt to reproduce the

radiation of a PWN using a single, localized lepton population.

Another important physical quantity is the strength of the magnetic field at the shock,

BS. A relation for this is given by Kennel & Coroniti (1984a) and Sefako & de Jager

(2003):

BS = κ

RS

�
σ

1 + σ

Ė

c
. (5.17)

For the modeling applied in this work, it is useful to combine the compression ratio κ and

the magnetization parameter σ by defining a new parameter

ξ = κ
�

σ

1 + σ
. (5.18)

Eq. 5.17 then becomes

BS = ξ

RS

�
Ė

c
. (5.19)

Assuming a toroidal magnetic field whose outward propagation is strongly connected to

that of the leptons, the ideal magnetohydrodynamic limit yields (Schöck 2010)

∂ �B

∂t
= ∇ ×

�
�v × �B

�
. (5.20)

As already discussed in Section 5.1, the model focuses on reproducing the inner part of the

PWN, leading to the simplification of a static system. In that case, the time-dependence

of Eq. 5.20 disappears, leading to

0 = ∇ ×
�
�v × �B

�
. (5.21)

Using this simplification, Kennel & Coroniti (1984a) derived the following relation, as-

suming a toroidal magnetic field:

Bvr = BSvSRS=const. (5.22)

This can be rewritten to

B = BSvSRS
vr

. (5.23)

When inserting Eq. 5.16, the magnetic field becomes a function of only one variable, r:

B = BS

�
RS
r

�1−α

. (5.24)

For given parameters α, RS and ξ it is now possible to calculate the bulk velocity and

magnetic field strength at a given point in the PWN. The next step is to look at the

development of the lepton population.

As the leptons propagate outwards, they suffer energy losses, leading to a change of the

spectral shape. According to de Jager & Harding (1992), two fundamental energy loss

mechanisms have to be considered:

dEe
dt

= −Ee
3 ∇·�v⊥ + Ėe,rad. (5.25)
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to at the termination shock, which are laid out in the same ref-
erence. The first one states that the gyroradius of the charged
particles constituting the pulsar wind must be smaller than the
shock radius RS. When defining ε = RL/RS with RL the gyrora-
dius, the maximum energy of the leptons is given by

Ee,max = εeκ

√

σ

1 + σ
Ė
c
. (4)

In this equation κ denotes the magnetic compression ratio at the
shock and σ the magnetization parameter corresponding to the
ratio of the magnetic and the particle energy outflow. According
to the second limit, a charged particle reaches its maximum en-
ergy when the synchrotron losses become as strong as the energy
gain. This statement can be rewritten to

Ee,max = 43.7 B−1/2S,G erg, (5)

with BS,G the magnetic field strength at the shock in units of G.
The lower value of both constraints is then used as Ee,max.

4.2. Outward Propagation of the Leptons
The radially symmetric model applied to G0.9+0.1 resembles
the one introduced by Schöck et al. (2010). The lepton plasma is
assumed to propagate outwards with a bulk velocity of

v(r) = vS
(RS
r

)α

, (6)

where α is the index of the adopted power law and vS the ve-
locity at the wind termination shock. When combining κ and
σ by defining ξ = κ

√
σ/(1 + σ), the relation for the magnetic

field strength at the shock is given by (Kennel & Coroniti 1984a;
Sefako & de Jager 2003):

BS =
ξ

RS

√

Ė
c
. (7)

Assuming a toroidal magnetic field whose outward propagation
is strongly connected to that of the leptons, the ideal magneto-
hydrodynamic limit on the assumption of a static system yields
(Kennel & Coroniti 1984a):

Bvr = BSvSRS = const. (8)

As the leptons propagate outwards, they suffer energy losses,
leading to a change of the spectral shape. According to
de Jager & Harding (1992), two fundamental energy loss mech-
anisms have to be considered:

dEe
dt
= −

Ee
3
∇· v⊥(r) − 2.368 × 10−3(BEe)2

erg
s
. (9)

In this equation, the first term corresponds to adiabatic energy
losses and can be calculated using Eq. 6. The second term de-
notes the losses due to synchrotron radiation of the leptons.

4.3. Implementation and Photon Emission
For the numerical implementation of the model, we divided the
observed part of the PWN into a large number of concentric
sub-shells in order to simulate the continuous case, just as per-
formed by Schöck et al. (2010). Using the previously described
relations, the lepton injection spectrum is then propagated out-
wards from one sub-shell to the next one.

The emitted synchrotron and IC radiation of the correspond-
ing lepton population can be calculated for each sub-shell. For
this, we used the equations as given by Blumenthal & Gould
(1970). Regarding the IC process, essentially three seed pho-
ton fields are relevant in the case of G0.9+0.1: the CMB com-
ponent, IR photons emitted from local dust and the starlight
component. The CMB spectrum is well described by a black-
body distribution for arbitrary locations. As an approximation of
the IR and starlight components, we used the interstellar radia-
tion fields of Porter & et al. (2005) developed for the GALPROP
code (Strong et al. 2000).

The emission of the sub-shells was summed up to shells with
the same inner and outer radii as chosen for the annuli of the X-
ray analysis.

4.4. Projection Effect
Since the model is three-dimensional, a shell actually corre-
sponds to a hollow sphere. An annulus is therefore merely the
two-dimensional projection of the three-dimensional shells. This
has two major implications. Firstly, only part of the volume of
a shell is visible in the projection represented by an annulus.
Secondly, outer shells add up to an annulus’ emission. The over-
all emission from annulus i is given by
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with dN/dE| j the spectrum of shell j. This equation includes the
assumption that the radiation is emitted isotropically and does
not undergo any absorption inside the PWN. The entries of vi j
can be written in a matrix of size n×n. For the chosen extraction
regions from Table 3, n = 4 and the matrix is

v =


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This means that, for example, a superposition of 74% of the sec-
ond, 33% of the third and 12% of the fourth shell generates the
emission of the second annulus. We added up the modeled emis-
sion from the shells accordingly in order to obtain the resulting
spectra of the annuli. The results can afterwards be compared
with the measured data from XMM-Newton.

4.5. Parameter Optimization
The previously described model allows to calculate the syn-
chrotron emission of the annuli for given parameters RS, η, ξ,
α, and ε. Afterwards the unabsorbed energy flux is computed in
the range of the above-mentioned energy bins for every annulus.
The results are then compared with the measured XMM-Newton
data by calculating the χ2 value. This approach optimizes the pa-
rameters by taking into account the overall energy flux as well as
the spectral shape. The partly correlated parameters are scanned
over the allowed range, searching for a minimum of χ2.

5. Results of the Modeling
We carried out the parameter optimization as described in the
previous section, assuming a distance of d = 13 kpc, following
Camilo et al. (2009). Since the inner radius of the first annulus
is 4 ′′, the upper limit on the extent of the termination shock was
set to the same value.

5

Ideal MHD limit (K&C, 1984a): 

The model 

We assume that the shape of the lepton population which is continuously injected at 
the termination shock is given by (e.g. Kennel & Coroniti 1984b)  

with the lepton energy Ee, the spectral index p (which is set to 2 in our case), and the 
normalization constant Q0. The relations that determine the leptonic outflow are given 
in the sketch above. As the leptons propagate outwards, they lose energy, leading to 
a change of the spectral shape. Two fundamental energy loss mechanisms have to 
be considered: synchrotron radiation of the leptons and adiabatic energy losses. 
They are given by (de Jager & Harding 1992)  

For a certain set of parameters, we numerically calculated the synchrotron emission 
of the same annuli as chosen for the XMM-Newton analysis. The parameters were 
then optimized so that the modeled radiation matches the X-ray data. The results for 
the evolution of the spectral index and surface brightness are shown in Fig. 4.  

Fig. 2. Smoothed XMM-Newton count map 
merged from the MOS and pn data of the 
2000 and 2003 observations. The annuli 
are encompassed by dashed cyan lines. 

Spectral properties 

We analyzed two XMM-Newton on-axis observations (Observation IDs 0112970201 and 
0144220101) with 14 respectively 36 ks exposure after background screening. The extracted 
spectra of the pn and MOS cameras were fitted in parallel with an absorbed power-law model.  
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Fig. 3. Energy spectrum extracted from 
the second annulus. The data were 
fitted in parallel with an absorbed 
power-law model. 
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Table 4. Results obtained by fitting a power-law spectrum to the XMM-Newton data of G0.9+0.1.

Annulus Γ Unabsorbed Flux(∗) Surface Brightness χ2/dof
No. (10−12 erg cm−2 s−1) (10−16 erg cm−2 s−1arcsec−2)

1 1.46 ± 0.17 0.50 ± 0.02 19.0 ± 0.9 45/55
2 1.65 ± 0.10 1.28 ± 0.03 13.7 ± 0.4 131/120
3 1.90 ± 0.12 1.10 ± 0.03 7.1 ± 0.2 85/95
4 2.18 ± 0.13 1.13 ± 0.04 3.4 ± 0.1 72/79

(∗) Energy range 2.5 − 10 keV

Q(Ee) = Q0E−pe , (2)

Q(Ee) =































Q0
(

Ee
Eb

)−p1
for Ee < Eb,

Q0
(

Ee
Eb

)−p2
for Ee ≥ Eb,

(3)

with the lepton energy Ee, the break energy Eb, the spectral in-
dices p1 and p2 and the normalization Q0 of the spectrum. Since
the model focuses on the inner part of the PWN close to the pul-
sar where mainly young leptons are expected to contribute to the
nonthermal emission, we assume that the time scale of our mod-
eling is small compared to the variability time scale of the injec-
tion spectrum. Furthermore the applied model only aims to re-
produce the measured X-ray and VHE γ-ray radiation, which al-
lows to restrict the view to the part of the lepton spectrum where
Ee ≥ Eb. The total amount of spin-down power transferred into
the energy of the modeled leptons is

∫ Ee,max

Ee,min
Q(Ee)Ee dEe = ηĖ, (4)

where η denotes the conversion efficiency of the pulsar. Using
this equation, the normalization of the lepton spectrum can
be calculated when the lower and upper integration limits are
known. In order to justify the assumption of a pure power law,
it has to be ensured that Ee,min > Eb. We chose Ee,min = 1 erg,
which is well above typical break energies. However this value is
still low enough not to affect the synchrotron or inverse Compton
(IC) emission in the observed energy ranges, as can be derived
from de Jager & Djannati-Ataı̈ (2008). Independent of the ac-
celeration mechanism, there are two limits which constrain the
maximum energy to which leptons can be accelerated at the ter-
mination shock (de Jager & Djannati-Ataı̈ 2008). The first one
states that the gyroradius of the charged particles constituting
the pulsar wind must be smaller than the shock radius RS. When
defining ε = RL/RS with RL the gyroradius, the maximum en-
ergy of the leptons is given by (de Jager & Djannati-Ataı̈ 2008)

Ee,max = εeκ

√

σ

1 + σ
Ė
c
. (5)

In this equation κ denotes the magnetic compression ratio
at the shock and σ the magnetization parameter correspond-
ing to the ratio of the magnetic and the particle energy out-
flow. According to the second limit, a charged particle reaches
its maximum energy when the synchrotron losses become as
strong as the energy gain. This statement can be rewritten to
(de Jager & Djannati-Ataı̈ 2008)

Ee,max = 43.7 B−1/2S,G erg, (6)
with BS,G the magnetic field strength at the shock in units of G.
The lower value of both constraints is then used as Ee,max.

4.2. Outward Propagation of the Leptons
The radially symmetric model applied to G0.9+0.1 resembles
the one introduced by Schöck et al. (2010). The lepton plasma is
assumed to propagate outwards with a bulk velocity of

v(r) = vS
(RS
r

)α

, (7)

where α is the index of the adopted power law and vS the ve-
locity at the wind termination shock. When combining κ and
σ by defining ξ = κ

√
σ/(1 + σ), the relation for the magnetic

field strength at the shock is given by (Kennel & Coroniti 1984a;
Sefako & de Jager 2003):

BS =
ξ

RS

√

Ė
c
. (8)

Assuming a toroidal magnetic field whose outward propagation
is directly connected to that of the leptons, the ideal magneto-
hydrodynamic limit on the assumption of a static system yields
(Kennel & Coroniti 1984a):

Bvr = BSvSRS = const. (9)

As the leptons propagate outwards, they lose energy, leading
to a change of the spectral shape. Two fundamental energy
loss mechanisms have to be considered: synchrotron radiation
of the leptons and adiabatic energy losses. They are given by
(de Jager & Harding 1992)

dEe
dt
= −

Ee
3
∇· v⊥(r) − 2.368 × 10−3(BEe)2

erg
s
. (10)

In this equation, the first term corresponds to adiabatic energy
losses and can be calculated using Eq. 7. The second term de-
notes the synchrotron losses of the leptons.

4.3. Implementation and Photon Emission
For the numerical implementation of the model, we divided the
observed part of the PWN into a large number of concentric
sub-shells in order to simulate the continuous case, just as per-
formed by Schöck et al. (2010). Using the previously described
relations, the lepton injection spectrum is then propagated out-
wards from one sub-shell to the next one.

The emitted synchrotron and IC radiation of the correspond-
ing lepton population can be calculated for each sub-shell.
For this, we used the equations given by Blumenthal & Gould
(1970). Regarding the IC process, essentially three seed pho-
ton fields are relevant in the case of G0.9+0.1: the CMB com-
ponent, IR photons emitted from local dust and the starlight
component. The CMB spectrum is well described by a black-
body distribution for arbitrary locations. As an approximation of

4

Implications for the VHE !-ray emission 

Assuming that the same lepton population that emits synchrotron radiation also 
scatters photons up to the VHE range, we calculated the inverse Compton (IC) 
radiation of the whole modeled area for the best parameter set.  

Fig. 5. SED of G0.9+0.1 showing the 
synchrotron and IC emission of the 
modeled area together with the XMM-
Newton data of the modeled part as well 
as the H.E.S.S. data of the whole source 
(Aharonian et al. 2005). 

Essentially three seed photon fields are 
relevant in the case of G0.9+0.1: the 
CMB component, IR photons emitted 
from local dust and the starlight 
component. As an approximation of 
these photon fields, we used the 
interstellar radiation fields of Porter et al. 
(2005) developed for the GALPROP 
code (Strong et al. 2000). The resulting 
SED together with the XMM-Newton and 
H.E.S.S. data (Aharonian et al. 2005) is 
shown in Fig. 5. Since G0.9+0.1 is a 
point source for H.E.S.S., it is not 
surprising that the measured VHE flux 
exceeds the modeled one as the latter 
only corresponds to the inner part of the 
PWN. Furthermore the emission of the 
outer part is expected to be softer since it 
originates from electrons which have 
suffered more energy losses. 
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Fig. 4. Evolution of the modeled and measured spectral index (left panel) and surface brightness 
(right panel) with increasing angular distance to the pulsar. 

We used the tbabs absorption model, along with 
the abundances from Wilms et al. (2000). In order 
to obtain a statistically significant result for the 
absorption column density, we first fitted the 
spectrum of a circular region with a radius of 45”, 
in the energy range 0.2-10 keV. The circle was 
centered on CXOU J174722.8#280915, the 
putative position of PSR J1747-2809. The result 
is NH = (2.26 ± 0.15) x 1023 cm-2. For the 
modeling of the emission, we extracted spectra of 
four annuli centered on the position of CXOU 
J174722.8#280915, which are illustrated in Fig. 
2. The inner and outer radii are 4-10”,10-20”, 
20-30”, and 30-45”, respectively. We fixed NH to 
2.26 x 1023 cm-2 for the individual annuli. As an 
example, Fig. 3 shows the spectrum of the 
second annulus. 
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Table 4. Results obtained by fitting a power-law spectrum to the XMM-Newton data of G0.9+0.1.

Annulus Γ Unabsorbed Flux(∗) Surface Brightness χ2/dof
No. (10−12 erg cm−2 s−1) (10−16 erg cm−2 s−1arcsec−2)

1 1.46 ± 0.17 0.50 ± 0.02 19.0 ± 0.9 45/55
2 1.65 ± 0.10 1.28 ± 0.03 13.7 ± 0.4 131/120
3 1.90 ± 0.12 1.10 ± 0.03 7.1 ± 0.2 85/95
4 2.18 ± 0.13 1.13 ± 0.04 3.4 ± 0.1 72/79

(∗) Energy range 2.5 − 10 keV

Q(Ee) = Q0E−pe , (2)

Q(Ee) =








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
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















Q0
(

Ee
Eb

)−p1
for Ee < Eb,

Q0
(

Ee
Eb

)−p2
for Ee ≥ Eb,

(3)

with the lepton energy Ee, the break energy Eb, the spectral in-
dices p1 and p2 and the normalization Q0 of the spectrum. Since
the model focuses on the inner part of the PWN close to the pul-
sar where mainly young leptons are expected to contribute to the
nonthermal emission, we assume that the time scale of our mod-
eling is small compared to the variability time scale of the injec-
tion spectrum. Furthermore the applied model only aims to re-
produce the measured X-ray and VHE γ-ray radiation, which al-
lows to restrict the view to the part of the lepton spectrum where
Ee ≥ Eb. The total amount of spin-down power transferred into
the energy of the modeled leptons is

∫ Ee,max

Ee,min
Q(Ee)Ee dEe = ηĖ, (4)

where η denotes the conversion efficiency of the pulsar. Using
this equation, the normalization of the lepton spectrum can
be calculated when the lower and upper integration limits are
known. In order to justify the assumption of a pure power law,
it has to be ensured that Ee,min > Eb. We chose Ee,min = 1 erg,
which is well above typical break energies. However this value is
still low enough not to affect the synchrotron or inverse Compton
(IC) emission in the observed energy ranges, as can be derived
from de Jager & Djannati-Ataı̈ (2008). Independent of the ac-
celeration mechanism, there are two limits which constrain the
maximum energy to which leptons can be accelerated at the ter-
mination shock (de Jager & Djannati-Ataı̈ 2008). The first one
states that the gyroradius of the charged particles constituting
the pulsar wind must be smaller than the shock radius RS. When
defining ε = RL/RS with RL the gyroradius, the maximum en-
ergy of the leptons is given by (de Jager & Djannati-Ataı̈ 2008)

Ee,max = εeκ

√

σ

1 + σ
Ė
c
. (5)

In this equation κ denotes the magnetic compression ratio
at the shock and σ the magnetization parameter correspond-
ing to the ratio of the magnetic and the particle energy out-
flow. According to the second limit, a charged particle reaches
its maximum energy when the synchrotron losses become as
strong as the energy gain. This statement can be rewritten to
(de Jager & Djannati-Ataı̈ 2008)

Ee,max = 43.7 B−1/2S,G erg, (6)
with BS,G the magnetic field strength at the shock in units of G.
The lower value of both constraints is then used as Ee,max.

4.2. Outward Propagation of the Leptons
The radially symmetric model applied to G0.9+0.1 resembles
the one introduced by Schöck et al. (2010). The lepton plasma is
assumed to propagate outwards with a bulk velocity of

v(r) = vS
(RS
r

)α

, (7)

where α is the index of the adopted power law and vS the ve-
locity at the wind termination shock. When combining κ and
σ by defining ξ = κ

√
σ/(1 + σ), the relation for the magnetic

field strength at the shock is given by (Kennel & Coroniti 1984a;
Sefako & de Jager 2003):

BS =
ξ

RS

√

Ė
c
. (8)

Assuming a toroidal magnetic field whose outward propagation
is directly connected to that of the leptons, the ideal magneto-
hydrodynamic limit on the assumption of a static system yields
(Kennel & Coroniti 1984a):

Bvr = BSvSRS = const. (9)

As the leptons propagate outwards, they lose energy, leading
to a change of the spectral shape. Two fundamental energy
loss mechanisms have to be considered: synchrotron radiation
of the leptons and adiabatic energy losses. They are given by
(de Jager & Harding 1992)

dEe
dt
= −

Ee
3
∇· v⊥(r) − 2.368 × 10−3(BEe)2

erg
s
. (10)

In this equation, the first term corresponds to adiabatic energy
losses and can be calculated using Eq. 7. The second term de-
notes the synchrotron losses of the leptons.

4.3. Implementation and Photon Emission
For the numerical implementation of the model, we divided the
observed part of the PWN into a large number of concentric
sub-shells in order to simulate the continuous case, just as per-
formed by Schöck et al. (2010). Using the previously described
relations, the lepton injection spectrum is then propagated out-
wards from one sub-shell to the next one.

The emitted synchrotron and IC radiation of the correspond-
ing lepton population can be calculated for each sub-shell.
For this, we used the equations given by Blumenthal & Gould
(1970). Regarding the IC process, essentially three seed pho-
ton fields are relevant in the case of G0.9+0.1: the CMB com-
ponent, IR photons emitted from local dust and the starlight
component. The CMB spectrum is well described by a black-
body distribution for arbitrary locations. As an approximation of

4

Conclusion 

We present an extensive analysis of the non-thermal X-ray emission of the PWN in 
the composite SNR G0.9+0.1. Furthermore we performed the first spatially resolved 
modeling of this source in the X-ray and VHE $-ray energy range. For the modeling of 
the emission, we extracted spectra of annulus-shaped regions centered on the 
putative pulsar position. The evolution of the spectral index and surface brightness 
with increasing distance to the pulsar can be explained by assuming a leptonic outflow 
which suffers synchrotron and adiabatic energy losses as implemented in our model. 
We calculated the IC emission of the modeled part of the PWN using the parameters 
optimized to reproduce the X-ray emission. Particularly the unknown extent of 
G0.9+0.1 in that energy range impedes an appropriate comparison of the measured 
and modeled data. This problem may be solved with future Imaging Atmospheric 
Cherenkov Telescopes like the Cherenkov Telescope Array (CTA). 


