X-ray absorption variability in NGC 4507 A. Marinucci^{1,2}, G. Risaliti^{2,3}, J. Wang², S. Bianchi¹, M. Elvis², G. Matt¹, E. Nardini²

¹Dipartimento di Fisica, Università degli Studi Roma Tre ²Harvard-Smithsonian Center for Astrophysics ³INAF - Osservatorio Astrofisico di Arcetri

X-ray absorption variability

Nearby obscured AGNs with multiple X-ray observations showed that N_H variations are a common feature of local Seyfert galaxies (Risaliti et al. 2002).

XMM-Newton, Suzaku and Chandra revealed that the circumnuclear X-ray absorber is located at sub-parsec distances from the central source.

Such rapid events imply that absorption is due to fast moving clouds ($\sim 10^3$ km s⁻¹) at distances of the order of $10^4 R_g$, which are typical values for the Broad Line Region.

N_H variability in NGC4507

NGC 4507 is a nearby (z = 0.0118) spiral galaxy and one of the X-ray brightest Compton-thin Seyfert 2s, despite the heavy obscuration.

Introduction

NGC 4507

Data analysis: RGS1+RGS2

Due to the good quality of the RGS spectrum, we used a self-consistent model to reproduce the whole spectrum in a wavelength range from 8 \mathring{A} up to 35 \mathring{A} . We produced a grid model for XSPEC using CLOUDY 08.00. It is an extension of the model used in Bianchi et al. (2010).

 $\begin{array}{c} \mbox{Final Cash/dof} = 5470/4567. \\ \mbox{log} U_1 = 2.37^{+0.58}_{-0.28}, \mbox{ log} U_2 = 0.56^{+0.19}_{-0.22} \\ \mbox{log} N_{H_1} = 22.15^{+0.48}_{-0.70} \mbox{ and } \mbox{log} N_{H_2} = 21.95^{+0.27}_{-0.23} \\ \mbox{kT} = 0.40^{+0.18}_{-0.08} \end{array}$

Data analysis: RGS1+RGS2

Energies are in keV units, wavelengths in Å, fluxes in 10^{-5} ph cm⁻² s⁻¹.

Line Id.	λ_T	E_T	Energy	Fluxes (a)	Total (b)	U_1 (c)	U_2 (d)	kT (e)
C νι Κα	33.736	0.367	$0.3674\substack{+0.0005\\-0.0005}$	$2.2^{+1.9}_{-1.8}$	2.7	0.5	2.1	0.1
C VI RRC	25.303	0.490	$0.485\substack{+0.001 \\ -0.003}$	$3.0^{+2.0}_{-1.4}$	1.8	0.4	1.4	0.04
	22.101	0.561 (f)	$0.561\substack{+0.0005\\-0.0005}$	$9.2^{+1.2}_{-1.4}$	8.6	0.02	8.5	0.07
O VII K α	21.807	0.569 (i)	$0.5683^{+0.0005}_{-0.001}$	$0.7^{+0.7}_{-0.6}$	2.1	-	2.0	0.02
	21.602	0.574~(r)	$0.5731^{+0.0004}_{-0.0004}$	$2.4_{-0.8}^{+0.9}$	1.9	0.03	1.7	0.2
O VIII K α	18.968	0.654	$0.6534\substack{+0.0004\\-0.0004}$	$2.3^{+0.4}_{-0.4}$	2.6	0.8	0.9	0.8
O VII K β	18.627	0.666	$0.670\substack{+0.002\\-0.002}$	$0.5\substack{+0.3 \\ -0.3}$	0.08	-	0.05	0.03
O VII RRC	16.769	0.739	$0.739\substack{+0.001\\-0.001}$	$1.3^{+0.4}_{-0.4}$	1.4	-	1.2	0.2
O VIII K β	16.005	0.775	$0.773\substack{+0.001 \\ -0.001}$	$0.6\substack{+0.2 \\ -0.2}$	0.2	0.04	0.03	0.1
O VIII RRC	14.228	0.871	$0.871\substack{+0.004 \\ -0.003}$	$1.3\substack{+0.3 \\ -0.3}$	1.2	0.6	0.4	0.2

Introduction

Data analysis: 5 Epic Pn + 5 Epic MOS spectra

 $F(E) = e^{-\sigma(E)N_H^G} [Ph_C + C + e^{-\sigma(E)N_H} BE^{-\Gamma} + R(\Gamma) + \sum_i G_i(E)]$

- Photoionised gas reproduced with self-consistent CLOUDY models
- Collisionally-ionised diffuse gas (APEC)
- Strongly absorbed powerlaw $(N_H = 7.9^{+0.1}_{-0.1} \times 10^{23} \text{ cm}^{-2})$
- Pure cold reflection component (PEXRAV)
- Emission lines

Data analysis: best fit results

Data analysis: 3-10 keV comparison

 $\Delta N_H = 1.8 \times 10^{23} \text{ cm}^{-2} \text{ at } \sim 6\sigma$ level. $\Delta t = 4 \text{ months} \rightarrow \text{These time scales rule out absorption from BLR clouds.}$

Absorption variability in a standard Torus

 $\begin{array}{l} D_C \sim v_k \times T_{cr} \\ \text{with our results} \\ (T_{cr} = 10^7 \text{ s}): \\ v_k = 150 \ M_{7.65} \ \mathrm{km \ s^{-1}} \\ & \downarrow \\ R = 9 \ M_{7.65}^{-1} \mathrm{D}_{10}^{-2} \ \mathrm{pc} \\ \text{where:} \end{array}$

 $\begin{array}{l} {\rm D}_{10} = D_S/10 {\rm R}_g \\ M_{7.65} = M_{bh}/10^{7.65} {\rm M}_\odot \end{array}$

(Loading Video...)

Summary

- $\bullet\,$ We detected strong absorption variability in NGC 4507 on time scales between 1.5 and 4 months
- The possibility of absorption by BLR clouds can be ruled out
- A single, universal structure of the absorber is not enough to reproduce the X-ray absorption features of AGNs
- More campaigns will be performed to monitor column density variations on these time scales.

- $\bullet~$ We detected strong absorption variability in NGC 4507 on time scales between 1.5 and 4 months
- The possibility of absorption by BLR clouds can be ruled out
- A single, universal structure of the absorber is not enough to reproduce the X-ray absorption features of AGNs
- More campaigns will be performed to monitor column density variations on these time scales.

- $\bullet~$ We detected strong absorption variability in NGC 4507 on time scales between 1.5 and 4 months
- The possibility of absorption by BLR clouds can be ruled out
- A single, universal structure of the absorber is not enough to reproduce the X-ray absorption features of AGNs
- More campaigns will be performed to monitor column density variations on these time scales.

- $\bullet~$ We detected strong absorption variability in NGC 4507 on time scales between 1.5 and 4 months
- The possibility of absorption by BLR clouds can be ruled out
- A single, universal structure of the absorber is not enough to reproduce the X-ray absorption features of AGNs
- More campaigns will be performed to monitor column density variations on these time scales.