

The Planck low-ell power spectra and likelihood

Paolo Natoli

Università di Ferrara

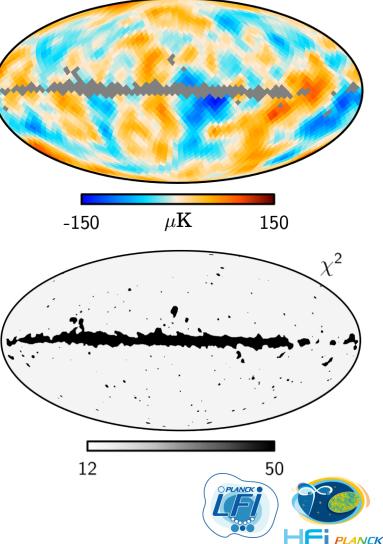
on behalf of the Planck Collaboration

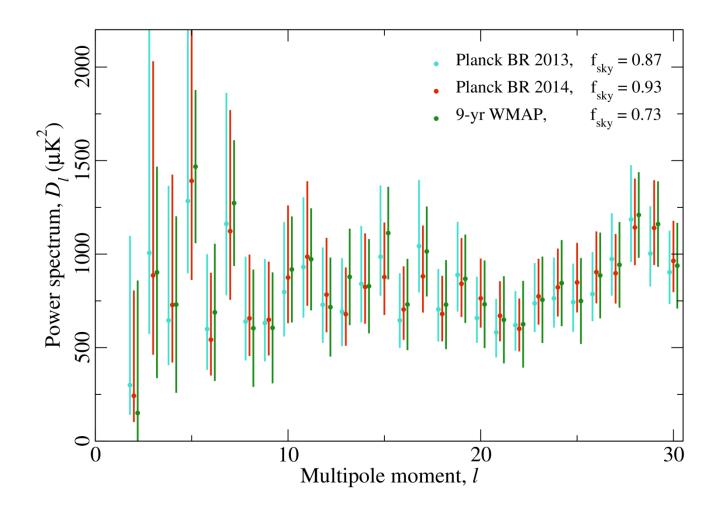
- The low ell likelihood requires dedicated methodology because approximations that work well at high ell typically fail at low ell
- Including low ell polarization is important to break the degeneracy between the scalar amplitude A_s and the optical depth at reionization τ (beyond what can we done with CMB lensing).
 - It can also help constraining the tensor to scalar ratio r through B modes
- In 2013, we used Planck in low ell temperature, but WMAP in low ell polarization, because Planck polarization was not ready
- In 2014, we are using Planck LFI 70 GHz as the low ell polarization baseline

Multivariate Gaussian likelihood in the m=[T,Q,U] maps, with CMB signal plus noise covariance matrix M :

$$\mathcal{L}(C_{\ell}) = P(\mathbf{m}|C_{\ell}) = \frac{1}{2\pi^{n/2}|\mathbf{M}|^{1/2}} \exp\left(-\frac{1}{2}\mathbf{m}^{t} \mathbf{M}^{-1}\mathbf{m}\right)$$

- 2. T,Q,U maps are cleaned of foreground emission and residual systematics:
 - a. In T, Commander multiband CMB solution
 - b. In Q,U polarized CMB is provided by Planck 70 GHz, after template fitting for polarized synchrotron and dust, based on Planck 30 and 353 GHz, and their polarization leakage corrections.
- **3.** Covers the range $2 \le l \le 29$




Low-/ Commander temperature map

planck

- As in 2013, the low-*l* temperature likelihood is based on the foreground-cleaned Commander map
- But unlike 2013, the 2014 map also incorporates the 9year WMAP data and the 408 MHz Haslam map
 - More frequencies \Rightarrow better fg model \Rightarrow more clean sky
 - See Wehus' talk tomorrow for more details
- Analysis chain:
 - 1. Perform component separation at 1° resolution
 - 2. Define narrow χ^2 -based processing mask to remove obvious residuals
 - 3. Fill mask with a constrained Gaussian realization
 - 4. Smooth to 440' FWHM, and repixelize at N_{side} =16
 - 5. Define proper χ^2 -based confidence mask at N_{side} =256
 - This year $f_{sky} = 0.93$, which is up from 0.87 in 2013
 - 6. Downgrade mask, and apply to N_{side} =16 map
 - Range of different χ^2 thresholds considered; no systematic biases or trends found in power spectrum until $f_{sky} \approx 0.97$

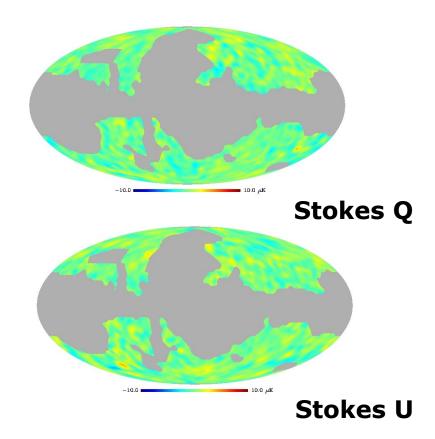
Preliminary

esa

All TT spectra shown here are computed with the Blackwell-Rao estimator from temperature data alone

The low-*l* Planck 2014 TT spectrum is on average ≈1.5% higher than the 2013 spectrum, primarily because of revised dipole calibration

Excellent agreement with WMAP


IJ

Polarized CMB from 70 GHz

- Low ell CMB polarization in Planck 2014 comes from 70 GHz.
- Out of eight surveys, we exclude from the dataset survey 2 and 4 because the exhibit unusual B mode excess, presumably connected with sidelobe contamination.
- 3. Templates (30 and 353) are built from full mission data.
- Working resolution is nside = 16, down sampled from high resolution through noise weighting. No smoothing is applied in polarization
- 5. The analysis mask retains 47% of the sky.

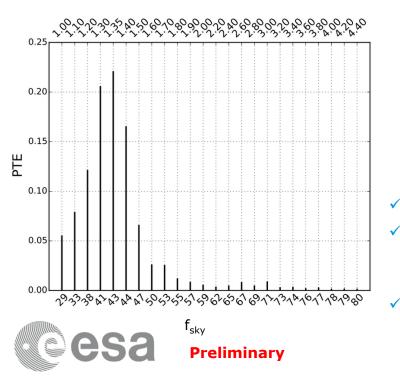
1. Foreground removal is based on a simple model, which assume that α and β are constant over the sky:

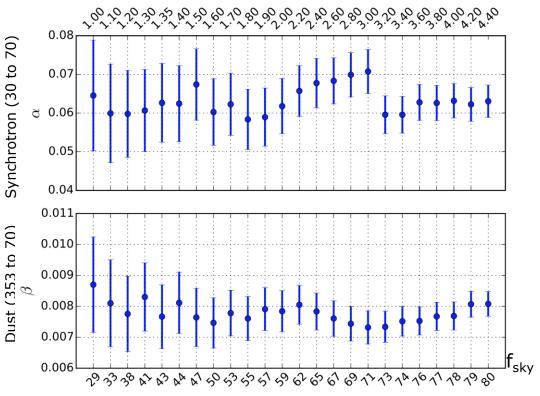
$$m_{Q,U} = \frac{1}{1 - \alpha - \beta} (m_{70} - \alpha m_{30} - \beta m_{353})$$

- 2. Coefficients are derived minimizing the pixel space $\chi^2 = m^T C^{-1} m$, with C a dense, CMB signal plus noise covariance matrix
 - a. Using a brute force Gaussian likelihood evaluation yields consistent estimates.
- 3. The clean map noise covariance matrix is derived as:

$$N = \frac{1}{(1 - \alpha - \beta)^2} (N_{70} + \sigma_{\alpha}^2 m_{30} m_{30}^T + \sigma_{\beta}^2 m_{353} m_{353}^T)$$

4. Propagating noise matrices from the templates has negligible impact.

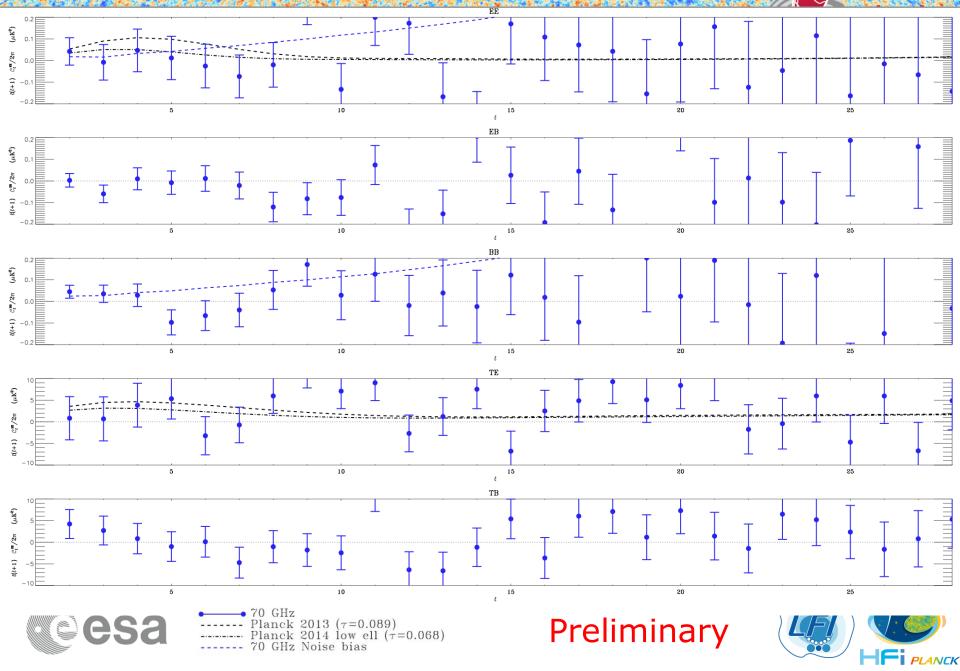

planck



Stability of best fit scalings with f_{sky}

- Galactic masks are built thresholding polarized intensity at 30 and 353 GHZ
- ✓ Scaling coefficients for appear rather stable below $f_{sky} \sim 60\%$.. Variations within errors does not influence the power spectra much.
- ✓ We compute pixel space $P(\chi^2 > \chi^2_{obs})$ as a goodness of fit criterion.

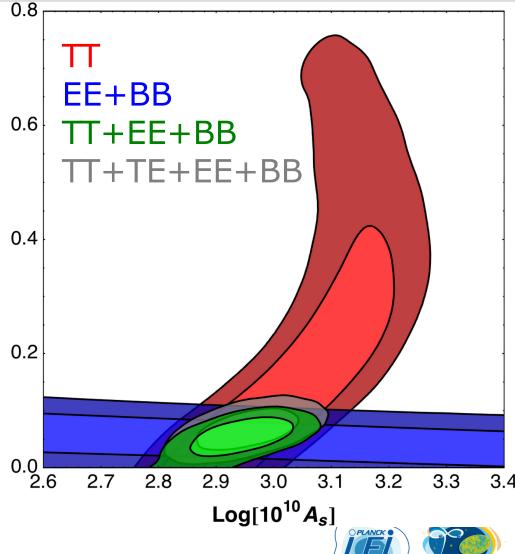
At f_{sky} < 50% fit becomes acceptable. We settle for 47%


 Usability of larger sky fractions may be hampered by crude approximations used for FG removed. More general component separation should perform better in 2015

For $f_{sky} = 47\%$ the physical scalings are:

 α_{synch} = - 3.4 ± 0.2 β_{dust} = 1.50 ± 0.08

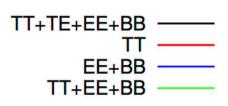
Low ell power spectra

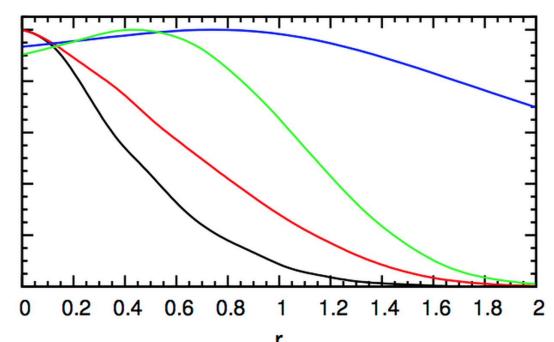


Two parameters (τ, As) from 2<ell<29 only

planck

- Temperature mainly contains information on A_s, not τ
- ✓ Polarization mainly contains information on τ not A_s
 ✓ Polarization mainly
 Contains information on τ
- The two orthogonal bounds combine nicely to constrain both
- Adding TE reinforces the τ detection

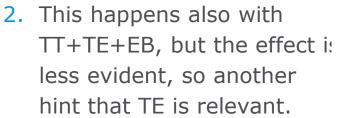

Preliminary



Tensor to scalar ratio r from 2<ell<29 only

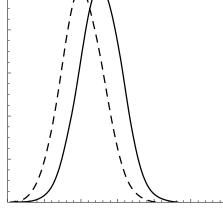
planck

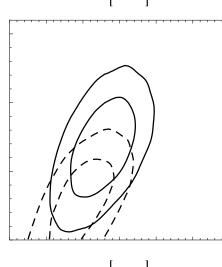
- This obtained is sampling also on A_s and τ
- All other parameters fixed to 2014 best fit
- Limit on r using polarization is stronger than with temperature only

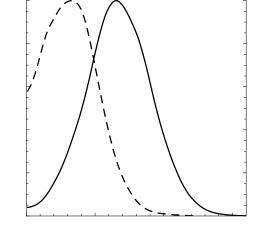


X, Ferrara, Dec 2014

Preliminary




No!


Consistency: suppose we exchange E and B :

ч

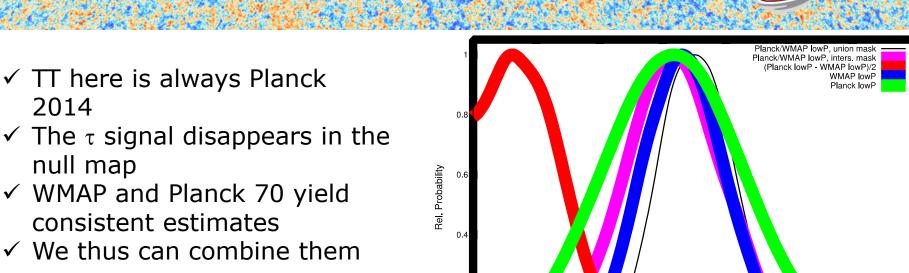
1. A $\pi/4$ rotation sends Q -> -U, U-> Q and E -> -B, B -> E. Do we still measure τ ?

WMAP-9 with 353

- 1. In 2013 we used WMAP-9 for the release low ℓ likelihood. Dust cleaning for this dataset was based on a model. When analyzed with Planck TT, this yielded $\tau = 0.089 \pm 0.013$. This value is confirmed when using WMAP-9 public low ell products with Planck 2014.
- 2. In the 2013 likelihood paper we used a preliminary version of 353 polarization as a dust template. This lowered τ by 1σ to $\tau = 0.075 \pm 0.013$.
- We have used the 2014 Planck 353 to clean again WMAP-9 Ka+Q+V, keeping WMAP K band as a synchrotron template (Planck 70 uses 30 GHz) and the WMAP processing and analysis masks (P06, fsky ≅ 0.74)
- 4. From this new dataset and Planck TT 2014 we get τ = 0.071 \pm 0.013.

0.2

0.12


0 14

Parameter Planck lowP WMAP lowP WMAP lowP Planck/WMAP lowP Planck/WMAP lowP Planck lowP +Planck lowT +PlanckTT +Planck lowT +PlanckTT +Planck lowT +PlanckTT $0.064^{+0.022}_{-0.023}$ $0.077\substack{+0.019\\-0.018}$ $0.067^{+0.013}_{-0.013}$ $0.071\substack{+0.012\\-0.012}$ $0.074^{+0.012}_{-0.012}$ $0.071^{+0.011}_{-0.013}$ au $8.5^{+2.5}_{-2.1}$ $9.8^{+1.8}_{-1.6}$ $8.9^{+1.3}_{-1.3}$ $9.3^{+1.1}_{-1.1}$ $9.3^{+1.1}_{-1.1}$ $9.63^{+1.1}_{-1.0}$ z_{re} $\log[10^{10}A_{s}]$ $3.087\substack{+0.036\\-0.035}$ $2.87^{+0.11}_{-0.06}$ $3.076\substack{+0.022\\-0.022}$ $2.88\substack{+0.10\\-0.06}$ $3.082\substack{+0.021\\-0.023}$ $2.79^{+0.19}_{-0.09}$ [0, 0.48][0, 0.90][0, 0.11][0, 0.52][0, 0.096][0, 0.10]r $A_s e^{-2\tau}$ $1.45_{-0.14}^{+0.24}$ $1.878^{+0.010}_{-0.010}$ $1.55\substack{+0.16\\-0.10}$ $1.879^{+0.011}_{-0.010}$ $1.55_{-0.11}^{+0.14}$ $1.879^{+0.010}_{-0.010}$

- null map ✓ WMAP and Planck 70 yield consistent estimates
 - \checkmark We thus can combine them

 \checkmark TT here is always Planck

2014

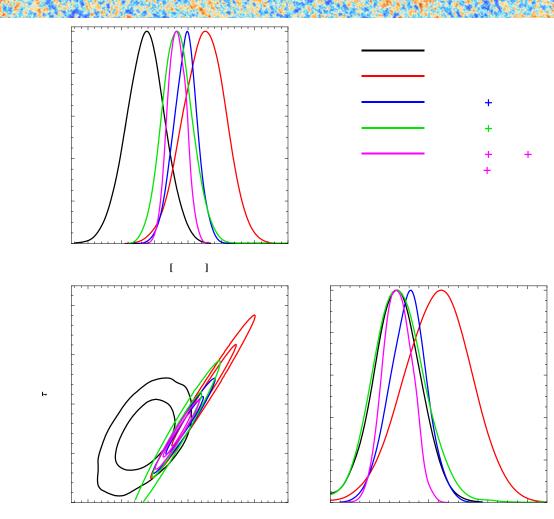
0.04

0.06

τ

0.08

0.1


WMAP 9 and Planck 70: parameters

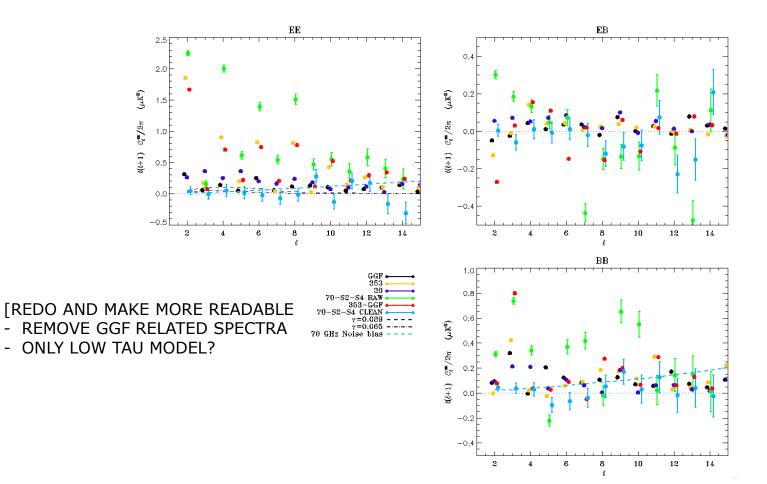
Low and high ell

- ✓ Low/high ell tension still present in 2014, but less prominent
- ✓ It also affects τ: high ell TT prefer an higher value
- ✓ Planck TT + low P and Planck TT + lensing are very compatible.

ſ

1

- Planck baseline low ell likelihood for 2014 is based on 70 GHz, with 30 and 353 GHz as cleaning templates
- 2. There is good consistency with WMAP-9 low ell polarization, when the latter is cleaned using 353.
- 3. Estimates of tau from low ell polarization and lensing are also compatible.
- 4. Planck can do much better than what is presented here. Planck HFI alone has already reached a sensitivity on τ of the order of 0.006 (three times better): results were however not deemed stable enough to be presented. There is also good hope from multifrequency polarized component separation.



The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada.

From frequency maps to clean maps

planck

<u>es</u>2 X, Ferrara, Dec 2014

2.5

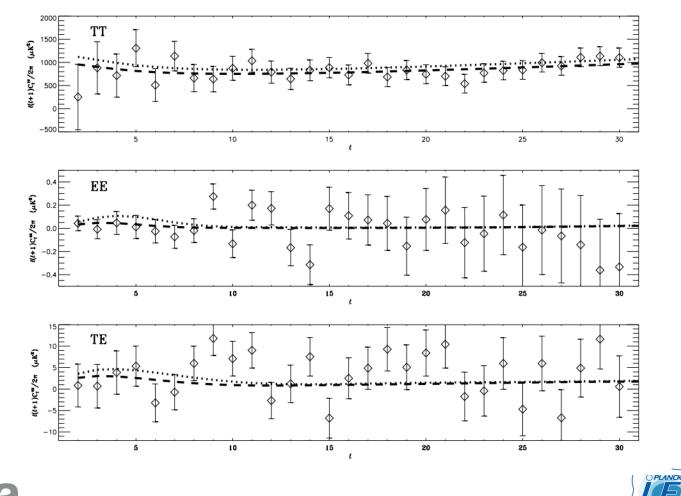
2.0

1.5

1.0

0.5

0.0

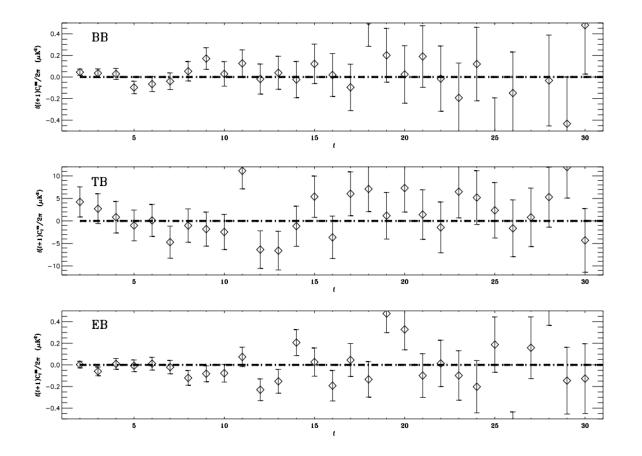

-0.5

 (μK^{B})

 $\ell(t+1) \quad C_{\ell}^{-}/B_{\Pi}$

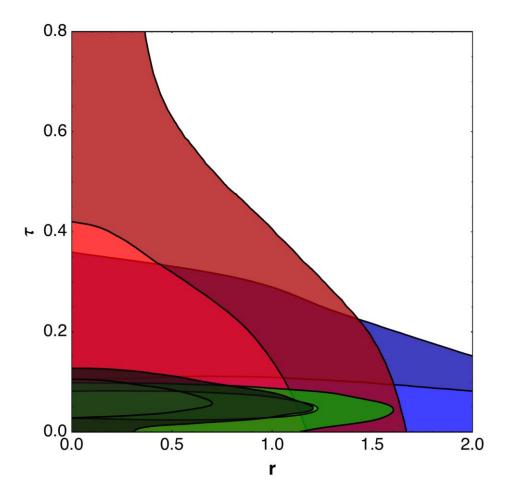
_

SPECTRA SIX [REDO WITH ALL IN ONE SLIDE] esa


Preliminary

Planck 2013 $\tau = 0.065$

Low ell power spectra 2/2



Preliminary

X, Ferrara, Dec 2014