Review of Future CMB Experiments

Planck Meeting – Ferarra, Italy December 2014 L. Page

10⁰

10⁰

10³

S Just

^{10²} Frequency (GHz)

10¹

10⁰

Planck guide to low dust polarization level in effective r

Foregrounds at I=80 in BICEP2 region

Work in progress with Steve Choi and Ana Pop

"Sure bets" from the ground and balloons with experiments in progress

r<0.01 (or detection) I<200

Sum of neutrino masses to 0.06 eV 200<l<4000

New tests of GR and the standard model through multiple cross correlations and the growth of structure. X-Corr

Technology: near term 1000s of bolometers, then to 10,000. Currently single frequency pixels, multichroic in 2015.

Ground Based

Chile

- ABS * ACTPol/AdvACt POLARBEAR
- * **CLASS**

*

*

Antarctica

BICEP/KECK * SPTPol QUBIC-Bolo int.

2016

TBD

TBD

Elsewhere (for now) **B-Machine** – WMRS GroundBIRD, LiteBIRD GLP – Greenland * MuSE-Multimoded

QUIJOTE – Canaries, HEM

Current or planned freqs

145 GHz 30, 40, 90, 150, 230 GHz 90, 150 GHz 40, 90, 150 GHz

90, 150, 220 GHz 90, 150 GHz 90, 150, 220 GHz

40 GHz 150 GHz 150, 210, 270 GHz 44, 95, 145, 225, 275 GHz 11-20, 30 GHz

Atacama B-mode Search

- \star 240 feeds
- ★ 270 K HWP
- ★ 4 K all reflective optics
- ★ 0.3 K detectors
- ★ Cryoperm/mu metal
- ★ 1 cubic meter
- ★ 145 GHz.

Continuously 2.5 Hz rotating warm half-wave plate with ABS

Kusaka, Essinger-Hileman, et al 2014

Demodulated timestream

Cosmology Large Angular Scale Surveyor

NASA

ISR

UNIVERSITY

Chuck Bennett, Toby Marriage, and colleagues

CLASS

✓ Inflation✓ Reionization

40 GHz Focal Plane

From Osamu Tajima GroundBIRD – Satellite-like scan on the ground, but super high-speed !

GroundBIRD – Instrument **features**

Details are described in J. Low Temp. Phys. 176, 691 (2014), and Proc. SPIE 8452, 84521M (2012).

Cold optics at 4 K, Mizuguchi-Dragone dual-reflector, 20° FoV, angular resolution of 0.6° at 145 GHz

Rotation mount maintains high-speed rotation scan + Continuous calibration Scan speed of 120°/s, i.e., 20 rpm

with sparse-wire

MKIDs array on 0.25 K 612 kids for **145 GHz**, 354 kids for 220 GHz.

Cryostat cooled by PTC + Helium sorption cooler **Boresight rotation** (stepwise)

GroundBIRD – *Inventions* to realize highspeed scan with high sensitivity

BICEP/Keck Experiments

• BICEP1, observed 2006-2008

- Initial result from first 2 seasons --> tightest constraint on r from B-modes: r = 0.03 + - 0.3 r < 0.72 (95% conf.) Chiang et al. 2010 (0906.1181)

Barkats et al.

- Full 3-year results coming in 2011:
- BICEP2, observing since Jan 2010
 - good 1st season completed (>4500h)
 - 512 detectors, mapping speed 10x BICEP1
- Keck Array, observing since Feb 2011
 - 1st season config: 1500 detectors (3x BICEP2)
 - 2012-14 seasons: more receivers (5 max), more bands (100, 150, 220 GHz)

More detectors: **BICEP2**

From Akito Kusaka

Multimoded Survey Experiment (MuSE)

Parameter	Value	Unit	Comment
Multimpole covarage	25 – 250		1.4m primary 1.1deg tophat
Frequency	44 / 95 / 145 225 / 275	GHz	
Bandwidth	0.23 / 0.27 / 0.25 0.22 / 0.18	Fractional	
Raw NEQ	4.5		95+145GHz
Foreground cleaned NEQ	8.0		Linear combination
# of pixels	50		8000 modes
Location	Ground		e.g., Atacama

Detector developed at NASA GSFC

- Developed for PIXIE satellite proposal (Kogut et. al. 2011)
- Polarization selective absorbing strings
- Can be configured for narrow-band application
 - 87 modes/detector
 @145GHz
- Cryogenically testing at Princeton

From Amber Miller

The Greenland LEKID Polarimeter

Compact LEKID-based spinning telescope for deployment to Greenland

Miller (PI), Johnson (Co-I), Mauskopf (Co-I), Day (Co-I), Jones, Groppi, Limon, Zmuidzinas, Ade, Bond, Eriksen, Pen, Wehus

Araujo et al. (2014) in Proc. SPIE

Focal Plane, LEKID Noise and NET

McCarrick et al. (2014) in Review of Scientific Instruments

Balloons

Have data	Current or planned freqs
	150, 250, 210 GHz
TBD	5 chan 40-250 GHz
2015	200, 270, 350, 600 GHz
	90, 150, 280 GHz
	Have data TBD 2015

EBEX in a Nutshell

- A CMB Polarimeter
- Long duration balloon borne
- Use >1000 bolometric TES
- 3 Frequency bands: 150, 250, 410 GHz
- Resolution: ~10' at all frequencies
- Polarimetry with continuously rotating half wave plate
- First flight in Antarctica 2012;
 10 days of data

One of two (identical) focal planes

EBEX in a Nutshell

- First use of arrays of TES bolometers on a balloon platform
- First demonstration of digital frequency domain multiplexing
- First (and only) use of x16 FDM
- First use of superconducting magnetic bearing for astrophysical polarimetry
- Analyzing data from LD2012 flight; Total ~6000 square degrees

EBEX6K

- 1048, 3-band multichroic pixels (90,150,220)
 + 1-band monochroic (280)
- Each pixel is dual polarization
- Sinuous-antenna design
- Total of 6048 detectors
- x64 muxing
- 5 μK*arcmin
- 2σ upper limit on r=0.007 (excludes lensing cleaning, foregrounds, or systematic uncertainties)

Fly in 12/2018 Pending funding approval

📉 Observational Cosmology - University of Minnesota

Primordial Inflation Polarization Explorer (PIPER)

- 5120 Detectors (TES bolometers)
- 1.5 K optics with no windows
- NEQ < 2 μK s^{1/2} at 200, 270 GHz

Systematics

- Front-End polarization modulator
- Twin telescopes in bucket dewar

Foregrounds

- 200, 270, 350, and 600 GHz
- Clearly separate dust from CMB

Sky Coverage

- Balloon payload, conventional flight 4 x 1280 Pic
- 8 flights; half the sky each night

Goal: Detect Primordial B-Modes with r < 0.01

PIPER Detector Arrays

Parameter	Band 1	Band 2	Band 3	Band 4
Frequency (GHz)	200	270	350	600
Wavelength (μm)	1500	1100	850	500
Bandwidth $\delta \nu / \nu$	0.30	0.30	0.16	0.10
Beam Width (arc-min)	19	15	13	10
Optical Efficiency to Detector	0.55	0.52	0.50	0.42
Detector Absorption Efficiency	0.90	0.90	0.70	0.50
CMB Power (fW)	120	70	20	<1
Atmospheric Power $(fW)^a$	20	90	150	230
Total Absorbed Power (fW)	200	190	190	250
Saturation Power (fW)	1200	1200	1200	1200
Photon NEP (W $Hz^{-1/2}$)	7×10^{-18}	8×10^{-18}	11×10^{-18}	13×10^{-18}
Phonon NEP (W $Hz^{-1/2}$)	4×10^{-18}	4×10^{-18}	4×10^{-18}	4×10^{-18}
Single-Detector NEQ ($\mu K \sqrt{s}$)	44	70	320	3800
Number of Detectors (phonon)	5120	5120	5120	5120
Number of Detectors (photon)	943	1550	2270	3760
Instrument NEQ ($\mu K \sqrt{s}$)	1.3	1.9	6.7	110
Instrument NEQ (mJy \sqrt{s})	13	9	17	30

 a Atmospheric values shown for float altitude 35 km

- Absorber-coupled TES bolometers at 100 mK
- 4 arrays each 32 x 40 pixels (5120 total)
- Backshort-Under-Grid (BUG) architecture
- Through-wafer vias put wiring UNDER array
- Bump-bond to NIST 32x40 tMUX chip

5120 detectors in each frequency band!

PIPER Sky Coverage and Sensitivity

Cold optics improve mapping speed by a factor of 10 ...

the David & Lucile Packard

SPIDER

Imperial College London

JEORD

UNIVERSITY OF

SPIBER

- A balloon borne polarimeter
- Will map the cleanest 8% of the full sky.
- Six telescopes 3/3 at 90/150 GHz
 - Approximately 2000 detectors (2376 w/80% yield)
- Half degree resolution.
 - $-\ell = 10 300$
- Science goals:
 - Set limits on inflationary gravitational wave amplitude, r < 0.03 at 99% confidence
 - Characterize polarized foregrounds
 - Lensing B-modes
- Palestine, June 4 August 28.
- Two science flights: 2013/2015
- Integrated, calibrated, and **deployed** to McMurdo Sep 2013
- Gov't shutdown eliminated the 2013/14 season in Oct 2013
- Spider **returned** to McChord AFB in December 2013.
- (Two science flights: 2013/2015)++

Instrument Summary

Band	90 GHz	150 GHz	
Bandwidth [GHz]	22	36	
Beam FWHM [arcmin]	42	30	
# Detectors per Focal Plane	288	512	
Yield	75-90%	75-90%	
Optical Efficiency	30-40%	35-45%	
NET per Detector [uK√s]	120-150	110-150	
NET per Focal Plane [uK√s]	8-9.5	5.5-6.5	

Expected Sensitivity

- Dec 2013: 3x (90 GHz, 150 GHz)
 - r<0.03 (99%CL) without FG for a 20-day flight
- Dec 2015: 2x (90 GHz, 150 GHz, 280 GHz)
 - r<0.02 (99%CL) without FG, r<0.03 (99%CL) with FG

