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Inflationary dynamics

p = w⇢ = (�1 + ✏)⇢Almost exponential expansion!
Only small departures from 
Cosmological Constant because 
Inflation has to end

During this period the Universe must have expanded by roughly 60 enfolds

N = ln(afinal/a?) ⇡ 60

✏ = � Ḣ

H2



The origin of fluctuations

Inflation

FRW evolution

Scale “crosses 
the horizon”

The clock fluctuations are “frozen” at horizon 
crossing (frequency of order H). We are probing 
the theory at an energy H which is roughly 
constant in time.  What observe is the 
fluctuations in the expansion of one region 
relative to the other due to the clock fluctuations.

Initial Conditions

During slow-roll evolution, r(N) doesn’t evolve much and one may obtain the following approximate

relation [27]
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where r(Ncmb) is the tensor-to-scalar ratio on CMB scales. Large values of the tensor-to-scalar ratio,

r > 0.01, therefore correlate with �� > Mpl or large-field inflation.

13 Primordial Spectra

The results for the power spectra of the scalar and tensor fluctuations created by inflation are
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where
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The horizon crossing condition k = aH makes (222) and (223) functions of the comoving wavenumber

k. The tensor-to-scalar ratio is
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13.1 Scale-Dependence

The scale dependence of the spectra follows from the time-dependence of the Hubble parameter and

is quantified by the spectral indices
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The first term is just �2" and the second term may be evaluated with the following result from

Appendix D
d ln "
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The second factor in Eqn. (227) is evaluated by recalling the horizon crossing condition k = aH, or

ln k = N + ln H . (230)
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Amplitude of scalar and tensor 
fluctuations as a function of scale

 Tensor to scalar ratio
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Planck 2013

10 Planck Collaboration: Constraints on inflation

Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k⇤ = 0.002 Mpc�1.
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Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N⇤ < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(�) = ⇤4 exp
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is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) / t2/�2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = �8(ns � 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(�) = ⇤4
 

�
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lead to inflation with a(t) / exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + �) and � > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ⇡ �8�(ns � 1)/(� � 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any �.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(�) ⇡ ⇤4
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where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns � 1 ⇡ �4M2

pl/µ
2 + 3r/8 and

r ⇡ 32�2⇤M2
pl/µ

4. This potential leads to predictions in agree-
ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ & 9 Mpl.

Models with p � 3 predict ns � 1 ⇡ �(2/N)(p � 1)/(p � 2)
when r ⇠ 0. The hill-top potential with p = 3 lies outside the

ns � 1 ⇡ �0.04 6= 0

12.3.2 Quantization

Each polarization of the gravitational wave is therefore just a renormalized massless field in de Sitter

space
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Since we computed the power spectrum of  = v/a in the previous section, �2
 = (H/2⇡)2m we

can simply right down the answer for �2
h, the power spectrum for a single polarization of tensor

perturbations,
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Again, the r.h.s. is to be evaluated at horizon exit.

12.3.3 Power Spectrum

The dimensionless power spectrum of tensor fluctuations therefore is
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12.4 The Energy Scale of Inflation

Tensor fluctuations are often normalized relative to the (measured) amplitude of scalar fluctuations,
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Since �2
s is fixed and �2

t / H2 ⇡ V , the tensor-to-scalar ratio is a direct measure of the energy scale

of inflation

V 1/4 ⇠
⇣ r

0.01

⌘1/4
1016 GeV . (218)

Large values of the tensor-to-scalar ratio, r � 0.01, correspond to inflation occuring at GUT scale

energies.

12.5 The Lyth Bound

Note from Eqns. (203) and (216) that the tensor-to-scalar ratio relates directly to the evolution of

the inflaton as a function of e-folds N

r =
8

M2
pl

✓
d�

dN

◆2

. (219)

The total field evolution between the time when CMB fluctuations exited the horizon at Ncmb and

the end of inflation at Nend can therefore be written as the following integral
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Observable gravity waves imply inflation 
happened around the GUT scale. 

Observable gravity waves imply super-
Planckian field excursions. �� ⇠

⇣ r

0.002

⌘1/2
✓
N?

60

◆
Mpl



Figure 1. Left: Joint constraints (68% and 95% c.l.) on r and the amplitude of the dust polarization
spectrum at l = 100 from Planck+WP+BICEP2, assuming a flat prior on the dust amplitude (blue
contours) or including the constraint on the dust polarization power in the BICEP2 field estimated by
extrapolating Planck data at 353GHz to 150GHz (red bands and purple contours). Right: Constraints
from the same combinations of data in the r–ns plane (blue and purple contours), compared with
constraints from Planck+WP alone (yellow contours). The thick solid line shows the relation between
ns and r predicted by inflation models with φ2 potentials and the number of e-folds varying from 50
to 65; the dotted line shows the same relation for linear potentials.

constraint with mean 0.012µK2 (adjusted downwards from the power at the midpoint of the
measured band, l = 80, using the power law scaling) and width 0.004µK2. We still include
sampling variance on the dust contribution in this case since the shape of the dust spectrum
in the BICEP2 field is poorly constrained. This is a somewhat conservative choice since the
overall amplitude of the spectrum in the BICEP2 field is measured without sampling vari-
ance, but the extra variance is negligible relative to the ∼ 30% uncertainty in the measured
amplitude. The left panel of Figure 1 shows that this constraint is fully consistent with
our initial result that assumed a flat prior on the dust spectrum amplitude. Since the new
Planck constraint favors models with relatively large contributions from dust, combining the
constraints tightens the limit on the gravity wave component to r < 0.09.

In the right panel of Figure 1, we show the constraints in the r–ns plane from this
analysis compared with the constraints from Planck+WP alone. While the upper limit on r
only improves slightly with the addition of BICEP2 data fit with a polarized dust component,
the joint constraints place increasing pressure on large-r inflation models such as quadratic
potentials. This is even more true with the addition of the dust amplitude constraint from
Planck 353GHz data, which excludes quadratic inflation models with ∼ 60 e-folds of inflation
at more than 2σ in the r–ns plane.

The 1D projection of the posterior probability for r is shown in Figure 2 for both
Planck+WP and Planck+WP+BICEP2, marginalized over the dust polarization amplitude
with either a flat prior or the Planck 353GHz constraint. We also plot the BICEP2 likelihood;
this is only intended as a qualitative comparison since, as noted by [19], the likelihood analysis
presented in [6] differs in several ways from the public likelihood code, leading to small shifts in
r. Despite these caveats, it is clear that the combined constraint from Planck+WP+BICEP2,
allowing a free dust polarization amplitude, is completely different from the main constraint
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FIG. 14. BICEP2 BB auto spectra and 95% upper limits
from several previous experiments [2, 40, 42, 43, 47, 49–51,
106]. The curves show the theory expectations for r = 0.2
and lensed-⇤CDM. The BICEP2 uncertainties include sample
variance on an r = 0.2 contribution.

on the tensor-to-scalar ratio and find r = 0.20+0.07
�0.05 with

r = 0 ruled out at a significance of 7.0�, with no fore-
ground subtraction. Multiple lines of evidence suggest
that the contribution of foregrounds (which will lower
the favored value of r) is subdominant: (i) direct pro-
jection of the available foreground models using typical
model assumptions, (ii) lack of strong cross-correlation of
those models against the observed sky pattern (Fig. 6),
(iii) the frequency spectral index of the signal as con-
strained using BICEP1 data at 100 GHz (Fig. 8), and
(iv) the power spectral form of the signal and its appar-
ent spatial isotropy (Figs. 3 and 10).

Subtracting the various dust models at their default
parameter values and re-deriving the r constraint still
results in high significance of detection. As discussed
above, one possibility that cannot be ruled out is a larger
than anticipated contribution from polarized dust. Given
the present evidence disfavoring this, these high values
of r are in apparent tension with previous indirect limits
based on temperature measurements and we have dis-
cussed some possible resolutions including modifications
of the initial scalar perturbation spectrum such as run-
ning. However, we emphasize that we do not claim to
know what the resolution is, if one is in fact necessary.

Figure 14 shows the BICEP2 results compared to pre-
vious upper limits. We have pushed into a new regime of
sensitivity, and the high-confidence detection of B-mode
polarization at degree angular scales brings us to an ex-
citing juncture. If the origin is in tensors, as favored by
the evidence presented above, it heralds a new era of B-
mode cosmology. However, if these B modes represent
evidence of a high-dust foreground, it reveals the scale of
the challenges that lie ahead.
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Note added

Since we submitted this paper new information on
polarized dust emission has become available from the
Planck experiment in a series of papers [107–110]. While
these confirm that the modal polarization fraction of dust
is ⇠ 4%, there is a long tail to fractions as high as 20%
(see Fig. 7 of [107]). There is also a trend to higher po-
larization fractions in regions of lower total dust emission
[see Fig. 18 of [107] noting that the BICEP2 field has a
column density of ⇠ (1�2)⇥1020 H cm�2]. We note that
these papers restrict their analysis to regions of the sky
where “systematic uncertainties are small, and where the
dust signal dominates total emission,” and that this ex-
cludes 21% of the sky that includes the BICEP2 region.
Thus while these papers do not o↵er definitive informa-
tion on the level of dust contamination in our field, they
do suggest that it may well be higher than any of the
models considered in Sec. IX.
In addition there has been extensive discussion of

our preprint in the cosmology community. Two
preprints [111, 112] look at polarized synchrotron emis-
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FIG. 13. Indirect constraints on r from CMB temperature
spectrum measurements relax in the context of various model
extensions. Shown here is one example, following Planck
XVI [9] Fig. 23, where tensors and running of the scalar spec-
tral index are added to the base ⇤CDM model. The contours
show the resulting 68% and 95% confidence regions for r and
the scalar spectral index ns when also allowing running. The
red contours are for the “Planck+WP+highL” data combi-
nation, which for this model extension gives a 95% bound
r < 0.26 [9]. The blue contours add the BICEP2 constraint
on r shown in the center panel of Fig. 10. See the text for
further details.

lease [104] (and are thus identical to those shown in that
Planck paper). We then apply importance sampling [105]
to these chains using our r likelihood as shown in Fig. 10
to derive the blue contours, for which the running pa-
rameter constraint shifts to dns/d ln k = �0.028± 0.009
(68%).

The point of Fig. 13 is not to endorse running as the
correct explanation of the observed deficit of low ` TT
power. It is simply to illustrate one example of a sim-
ple model extension beyond standard ⇤CDM+tensors
which can resolve the apparent tension between previ-
ous TT measurements and the direct evidence for ten-
sors provided by our B-mode measurements—probably
there are others. Of course, one might also speculate
that the tension could be reduced within the standard
⇤CDM+tensors model, for example if ⌧ or other param-
eters were allowed to shift. We anticipate a broad range
of possibilities will be explored.

XII. CONCLUSIONS

We have described the observations, data reduction,
simulation, and power spectrum analysis of all three sea-
sons of data taken by the BICEP2 experiment. The po-
larization maps presented here are the deepest ever made
at degree angular scales having noise level of 87 nK-deg

in Q and U over an e↵ective area of 380 square deg.
To fully exploit this unprecedented sensitivity we have

expanded our analysis pipeline in several ways. We have
added an additional filtering of the time stream using a
template temperature map (from Planck) to render the
results insensitive to temperature to polarization leak-
age caused by leading order beam systematics. In addi-
tion we have implemented a map purification step that
eliminates ambiguous modes prior to B-mode estima-
tion. These deprojection and purification steps are both
straightforward extensions of the kinds of linear filtering
operations that are now common in CMB data analysis.
The power spectrum results are consistent with lensed-

⇤CDM with one striking exception: the detection of a
large excess in the BB spectrum in the ` range where
an inflationary gravitational wave signal is expected to
peak. This excess represents a 5.2� excursion from the
base lensed-⇤CDM model. We have conducted a wide se-
lection of jackknife tests which indicate that the B-mode
signal is common on the sky in all data subsets. These
tests o↵er strong empirical evidence against a systematic
origin for the signal.
In addition, we have conducted extensive simulations

using high fidelity per channel beam maps. These con-
firm our understanding of the beam e↵ects, and that after
deprojection of the two leading order modes, the residual
is far below the level of the signal which we observe.
Having demonstrated that the signal is real and “on

the sky” we proceeded to investigate if it may be due to
foreground contamination. Polarized synchrotron emis-
sion from our galaxy is estimated to be negligible using
low frequency polarized maps from WMAP. For polar-
ized dust emission public maps are not yet available. We
therefore investigate a number of commonly used models
and one which uses information which is currently o�-
cially available from Planck. At default parameter values
these models predict auto spectrum power well below our
observed level. However, these models are not yet well
constrained by external public data, which cannot em-
pirically exclude dust emission bright enough to explain
the entire excess signal. In the context of the DDM1
model, explaining the entire excess signal would require
increasing the predicted dust power spectrum by 6⇥, for
example by increasing the assumed uniform polarization
fraction in our field from 5% (a typical value) to ⇠ 13%.
None of these models show significant cross-correlation
with our maps (although this may be interpreted simply
as due to limitations of the models).
Taking cross spectra against 100 GHz maps from BI-

CEP1 we find significant correlation and set a constraint
on the spectral index of the B-mode excess consistent
with CMB and disfavoring dust by 1.7�. The fact that
the BICEP1 and Keck Array maps cross correlate with
BICEP2 is powerful further evidence against systematics.
An economical interpretation of the B-mode signal

which we have detected is that it is largely due to tensor
modes—the IGW template is an excellent fit to the ob-
served excess. We therefore proceed to set a constraint

Observable gravity waves 
imply super-Planckian 
field excursions. !
Far away from the 
minimum. 
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Potential clue: The size of the tilt
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Derivatives with respect to scale 
translate to derivatives with respect 
to time or N. 

What if the tilt is related to the end of inflation?
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Implications of the scalar tilt for the tensor-to-scalar ratio
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We investigate the possible implications of the measured value of the scalar tilt ns for the tensor-
to-scalar ratio r in slow-roll, single-field inflationary models. The measured value of the tilt satisfies
ns � 1 ⇠ 1/N⇤, where N⇤ ⇠ 60 is the number of e-folds for observationally relevant scales. If this
is not a coincidence and the scaling holds for di↵erent values of N , it strongly suggests that either
r is as big as 10�1, or smaller than 10�2 and exponentially dependent on ns. A large region of the
(ns,r)-plane is not compatible with this scaling.

Introduction.—Planck confirmed previous indications
that the spectrum of scalar perturbations is not scale
invariant: ns � 1 = �0.0397 ± 0.0073 at 1� [1]
(�0.0329 ± 0.0069 in the reanalysis of [2]). This is
surely an important step in the understanding of the
early universe: inflation generically predicts a deviation
from scale-invariance, although the magnitude is, as we
will discuss, model-dependent. The experimental value
of |ns � 1| is of order 1/N⇤ ' 0.017, where N⇤ is the
number of e-folds to the end of inflation for observation-
ally relevant scales (we are going to take N⇤ = 60 for
definiteness). This did not have to be the case: it is easy
to find models on the market with |ns � 1| much bigger,
say 0.2 (of course the slow-roll approximation requires
the tilt to be much smaller than 1), or much smaller, say
10�4. For example in the prototypical hybrid inflation
model

V =
1

2
m2�2 +

1

4
�( 2 �M2)2 + �0�2 2 (1)

the tilt is ns�1 ' 2⌘ = (2m2M2
P)/V0, where V0 = 1

4�M
4

is the vacuum energy during inflation, before the field  
relaxes to the true minimum. The tilt is a constant that
does not depend on N : it can be much smaller or much
larger than 1/N . (In this example the tilt is positive,
but the same applies to inverted hybrid models with red
tilt.) In this kind of models, the inflaton “does not know”
when inflation is going to end, i.e. when the waterfall
field  will become tachyonic. Thus there is no relation
between the tilt, which only depends on the derivatives
of the potential at a given point, and N , which measures
the distance to the end of inflation. The approximate
equality ns � 1 ⇠ 1/N could just be an accident.

On the other hand in this note we want to take this
indication seriously and see what are the implications on
inflation, and in particular on the expected amount of

gravitational waves. Our formulae will be similar to [3]
and [4] (see also [5] and [6]) although the implications we
will draw will be slightly di↵erent.

Main argument.— The experimental value of the scalar
tilt suggests

ns � 1 = � ↵

N
(2)

with ↵ of order unity. We assume the equation above to
be valid in a window which is comfortably larger than
the observable one: in other words the same equation
would hold if one were to measure perturbations at, say,
N = 10 or N = 200 instead of N = 60. For the time
being we assume ↵ is strictly a constant and later dis-
cuss deviations from this assumption. Writing the tilt
in terms of ✏ ⌘ �Ḣ/H2 and its derivative, the equation
above becomes (at first order in slow-roll) a di↵erential
equation for ✏

ns � 1 = �2✏+
d log ✏

dN
= � ↵

N
. (3)

This is easily integrated to give

✏(N) =
1

2(↵� 1)�1N +AN↵
, (4)

with A an integration constant. By a judicious choice
of A one can choose any value for ✏ (and thus for r) at
N⇤ = 60. However the scaling (2) says that there is noth-
ing special at the scale N⇤ = 60 we measure, therefore it
looks reasonable to further assume that, in a certain win-
dow which encompasses the observable 60 e-folds, only
one of the two power laws in the denominator of (4) dom-
inates. Conversely N⇤ = 60 would be accidentally close
to the transition point between the two regimes. Within
this assumption one has two di↵erent cases depending on
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Introduction.—Planck confirmed previous indications
that the spectrum of scalar perturbations is not scale
invariant: ns � 1 = �0.0397 ± 0.0073 at 1� [1]
(�0.0329 ± 0.0069 in the reanalysis of [2]). This is
surely an important step in the understanding of the
early universe: inflation generically predicts a deviation
from scale-invariance, although the magnitude is, as we
will discuss, model-dependent. The experimental value
of |ns � 1| is of order 1/N⇤ ' 0.017, where N⇤ is the
number of e-folds to the end of inflation for observation-
ally relevant scales (we are going to take N⇤ = 60 for
definiteness). This did not have to be the case: it is easy
to find models on the market with |ns � 1| much bigger,
say 0.2 (of course the slow-roll approximation requires
the tilt to be much smaller than 1), or much smaller, say
10�4. For example in the prototypical hybrid inflation
model
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is the vacuum energy during inflation, before the field  
relaxes to the true minimum. The tilt is a constant that
does not depend on N : it can be much smaller or much
larger than 1/N . (In this example the tilt is positive,
but the same applies to inverted hybrid models with red
tilt.) In this kind of models, the inflaton “does not know”
when inflation is going to end, i.e. when the waterfall
field  will become tachyonic. Thus there is no relation
between the tilt, which only depends on the derivatives
of the potential at a given point, and N , which measures
the distance to the end of inflation. The approximate
equality ns � 1 ⇠ 1/N could just be an accident.

On the other hand in this note we want to take this
indication seriously and see what are the implications on
inflation, and in particular on the expected amount of

gravitational waves. Our formulae will be similar to [3]
and [4] (see also [5] and [6]) although the implications we
will draw will be slightly di↵erent.

Main argument.— The experimental value of the scalar
tilt suggests
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with ↵ of order unity. We assume the equation above to
be valid in a window which is comfortably larger than
the observable one: in other words the same equation
would hold if one were to measure perturbations at, say,
N = 10 or N = 200 instead of N = 60. For the time
being we assume ↵ is strictly a constant and later dis-
cuss deviations from this assumption. Writing the tilt
in terms of ✏ ⌘ �Ḣ/H2 and its derivative, the equation
above becomes (at first order in slow-roll) a di↵erential
equation for ✏
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This is easily integrated to give

✏(N) =
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, (4)

with A an integration constant. By a judicious choice
of A one can choose any value for ✏ (and thus for r) at
N⇤ = 60. However the scaling (2) says that there is noth-
ing special at the scale N⇤ = 60 we measure, therefore it
looks reasonable to further assume that, in a certain win-
dow which encompasses the observable 60 e-folds, only
one of the two power laws in the denominator of (4) dom-
inates. Conversely N⇤ = 60 would be accidentally close
to the transition point between the two regimes. Within
this assumption one has two di↵erent cases depending on

Not necessarily the case, for example: 
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the tilt is determined 
by parameters and is 
independent of N.  



Implications of the scalar tilt for the tensor-to-scalar ratio

Paolo Creminelli,1 Sergei Dubovsky,1, 2 Diana López Nacir,1, 3 Marko
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Introduction.—Planck confirmed previous indications
that the spectrum of scalar perturbations is not scale
invariant: ns � 1 = �0.0397 ± 0.0073 at 1� [1]
(�0.0329 ± 0.0069 in the reanalysis of [2]). This is
surely an important step in the understanding of the
early universe: inflation generically predicts a deviation
from scale-invariance, although the magnitude is, as we
will discuss, model-dependent. The experimental value
of |ns � 1| is of order 1/N⇤ ' 0.017, where N⇤ is the
number of e-folds to the end of inflation for observation-
ally relevant scales (we are going to take N⇤ = 60 for
definiteness). This did not have to be the case: it is easy
to find models on the market with |ns � 1| much bigger,
say 0.2 (of course the slow-roll approximation requires
the tilt to be much smaller than 1), or much smaller, say
10�4. For example in the prototypical hybrid inflation
model
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is the vacuum energy during inflation, before the field  
relaxes to the true minimum. The tilt is a constant that
does not depend on N : it can be much smaller or much
larger than 1/N . (In this example the tilt is positive,
but the same applies to inverted hybrid models with red
tilt.) In this kind of models, the inflaton “does not know”
when inflation is going to end, i.e. when the waterfall
field  will become tachyonic. Thus there is no relation
between the tilt, which only depends on the derivatives
of the potential at a given point, and N , which measures
the distance to the end of inflation. The approximate
equality ns � 1 ⇠ 1/N could just be an accident.

On the other hand in this note we want to take this
indication seriously and see what are the implications on
inflation, and in particular on the expected amount of

gravitational waves. Our formulae will be similar to [3]
and [4] (see also [5] and [6]) although the implications we
will draw will be slightly di↵erent.

Main argument.— The experimental value of the scalar
tilt suggests

ns � 1 = � ↵

N
(2)

with ↵ of order unity. We assume the equation above to
be valid in a window which is comfortably larger than
the observable one: in other words the same equation
would hold if one were to measure perturbations at, say,
N = 10 or N = 200 instead of N = 60. For the time
being we assume ↵ is strictly a constant and later dis-
cuss deviations from this assumption. Writing the tilt
in terms of ✏ ⌘ �Ḣ/H2 and its derivative, the equation
above becomes (at first order in slow-roll) a di↵erential
equation for ✏
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d log ✏
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This is easily integrated to give

✏(N) =
1
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, (4)

with A an integration constant. By a judicious choice
of A one can choose any value for ✏ (and thus for r) at
N⇤ = 60. However the scaling (2) says that there is noth-
ing special at the scale N⇤ = 60 we measure, therefore it
looks reasonable to further assume that, in a certain win-
dow which encompasses the observable 60 e-folds, only
one of the two power laws in the denominator of (4) dom-
inates. Conversely N⇤ = 60 would be accidentally close
to the transition point between the two regimes. Within
this assumption one has two di↵erent cases depending on
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Simonović,4 Gabriele Trevisan,5, 6 Giovanni Villadoro,1 and Matias Zaldarriaga4

1
Abdus Salam International Centre for Theoretical Physics,

Strada Costiera 11, 34151, Trieste, Italy

2
Center for Cosmology and Particle Physics, Department of Physics,

New York University New York, NY, 10003, USA

3
Departamento de F́ısica and IFIBA, FCEyN UBA, Facultad de Ciencias Exactas y Naturales,

Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina

4
Institute for Advanced Study, Princeton, NJ 08540, USA

5
SISSA, via Bonomea 265, 34136, Trieste, Italy

6
Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, 34136, Trieste, Italy

We investigate the possible implications of the measured value of the scalar tilt ns for the tensor-
to-scalar ratio r in slow-roll, single-field inflationary models. The measured value of the tilt satisfies
ns � 1 ⇠ 1/N⇤, where N⇤ ⇠ 60 is the number of e-folds for observationally relevant scales. If this
is not a coincidence and the scaling holds for di↵erent values of N , it strongly suggests that either
r is as big as 10�1, or smaller than 10�2 and exponentially dependent on ns. A large region of the
(ns,r)-plane is not compatible with this scaling.

Introduction.—Planck confirmed previous indications
that the spectrum of scalar perturbations is not scale
invariant: ns � 1 = �0.0397 ± 0.0073 at 1� [1]
(�0.0329 ± 0.0069 in the reanalysis of [2]). This is
surely an important step in the understanding of the
early universe: inflation generically predicts a deviation
from scale-invariance, although the magnitude is, as we
will discuss, model-dependent. The experimental value
of |ns � 1| is of order 1/N⇤ ' 0.017, where N⇤ is the
number of e-folds to the end of inflation for observation-
ally relevant scales (we are going to take N⇤ = 60 for
definiteness). This did not have to be the case: it is easy
to find models on the market with |ns � 1| much bigger,
say 0.2 (of course the slow-roll approximation requires
the tilt to be much smaller than 1), or much smaller, say
10�4. For example in the prototypical hybrid inflation
model
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is the vacuum energy during inflation, before the field  
relaxes to the true minimum. The tilt is a constant that
does not depend on N : it can be much smaller or much
larger than 1/N . (In this example the tilt is positive,
but the same applies to inverted hybrid models with red
tilt.) In this kind of models, the inflaton “does not know”
when inflation is going to end, i.e. when the waterfall
field  will become tachyonic. Thus there is no relation
between the tilt, which only depends on the derivatives
of the potential at a given point, and N , which measures
the distance to the end of inflation. The approximate
equality ns � 1 ⇠ 1/N could just be an accident.

On the other hand in this note we want to take this
indication seriously and see what are the implications on
inflation, and in particular on the expected amount of

gravitational waves. Our formulae will be similar to [3]
and [4] (see also [5] and [6]) although the implications we
will draw will be slightly di↵erent.

Main argument.— The experimental value of the scalar
tilt suggests

ns � 1 = � ↵

N
(2)

with ↵ of order unity. We assume the equation above to
be valid in a window which is comfortably larger than
the observable one: in other words the same equation
would hold if one were to measure perturbations at, say,
N = 10 or N = 200 instead of N = 60. For the time
being we assume ↵ is strictly a constant and later dis-
cuss deviations from this assumption. Writing the tilt
in terms of ✏ ⌘ �Ḣ/H2 and its derivative, the equation
above becomes (at first order in slow-roll) a di↵erential
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with A an integration constant. By a judicious choice
of A one can choose any value for ✏ (and thus for r) at
N⇤ = 60. However the scaling (2) says that there is noth-
ing special at the scale N⇤ = 60 we measure, therefore it
looks reasonable to further assume that, in a certain win-
dow which encompasses the observable 60 e-folds, only
one of the two power laws in the denominator of (4) dom-
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invariant: ns � 1 = �0.0397 ± 0.0073 at 1� [1]
(�0.0329 ± 0.0069 in the reanalysis of [2]). This is
surely an important step in the understanding of the
early universe: inflation generically predicts a deviation
from scale-invariance, although the magnitude is, as we
will discuss, model-dependent. The experimental value
of |ns � 1| is of order 1/N⇤ ' 0.017, where N⇤ is the
number of e-folds to the end of inflation for observation-
ally relevant scales (we are going to take N⇤ = 60 for
definiteness). This did not have to be the case: it is easy
to find models on the market with |ns � 1| much bigger,
say 0.2 (of course the slow-roll approximation requires
the tilt to be much smaller than 1), or much smaller, say
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is the vacuum energy during inflation, before the field  
relaxes to the true minimum. The tilt is a constant that
does not depend on N : it can be much smaller or much
larger than 1/N . (In this example the tilt is positive,
but the same applies to inverted hybrid models with red
tilt.) In this kind of models, the inflaton “does not know”
when inflation is going to end, i.e. when the waterfall
field  will become tachyonic. Thus there is no relation
between the tilt, which only depends on the derivatives
of the potential at a given point, and N , which measures
the distance to the end of inflation. The approximate
equality ns � 1 ⇠ 1/N could just be an accident.

On the other hand in this note we want to take this
indication seriously and see what are the implications on
inflation, and in particular on the expected amount of
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and [4] (see also [5] and [6]) although the implications we
will draw will be slightly di↵erent.

Main argument.— The experimental value of the scalar
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with ↵ of order unity. We assume the equation above to
be valid in a window which is comfortably larger than
the observable one: in other words the same equation
would hold if one were to measure perturbations at, say,
N = 10 or N = 200 instead of N = 60. For the time
being we assume ↵ is strictly a constant and later dis-
cuss deviations from this assumption. Writing the tilt
in terms of ✏ ⌘ �Ḣ/H2 and its derivative, the equation
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of A one can choose any value for ✏ (and thus for r) at
N⇤ = 60. However the scaling (2) says that there is noth-
ing special at the scale N⇤ = 60 we measure, therefore it
looks reasonable to further assume that, in a certain win-
dow which encompasses the observable 60 e-folds, only
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The Lyth Bound

The Lyth Bound of Inflation with a Tilt
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We provide strong evidence for universality of the inflationary field range: given an accurate
measurement of (ns, r), one can infer �� in a model-independent way in the sub-Planckian regime
for a range of universality classes of inflationary models. Both the tensor-to-scalar ratio as well as
the spectral tilt are essential for the field range. Given the Planck constraints on ns, the Lyth bound
is strengthened by two orders of magnitude: whereas the original bound gives a sub-Planckian field
range for r . 2 · 10�3, we find that n = 0.96 brings this down to r . 2 · 10�5.

Introduction. Inflation is the leading mechanism to
generate the seeds for large scale structure formation.
Two of its most robust predictions are a nearly scale in-
variant spectrum of density perturbations, encoded in the
spectral index or tilt ns, and a stochastic background of
gravitational waves, encoded in the tensor-to-scalar ratio
r. The spectral index has been measured by the Planck
satellite [1]:

ns = 0.9603± 0.0073 , (1)

while exact scale invariance would correspond to ns = 1.
Moreover, Planck has placed an upper limit on r of
around 10 percent. In contrast, the recent BICEP2 claim
[2] of a detection around 20 percent awaits further clari-
fication and hence will not be considered in this Letter.

A crucial distinction in inflationary models is between
small- and large-field models, defined by sub- and super-
Planckian field ranges ��. Generic quantum corrections
to a tree-level scalar potential will come in higher pow-
ers of �, and hence large-field models are particularly
sensitive to these. This puts the consistency of an e↵ec-
tive field theory description of such models into doubt.
A crucial question in theoretical cosmology is therefore
whether the inflationary field range exceeds the Planck
length or not.

Knowledge of the evolution of r(N) during all e-
foldings N of the inflationary period would determine
the field range by means of (MP = 1)

d�

dN
=

r
r(N)

8
. (2)

Moreover, a first estimate of �� can be obtained by the
assumption that r(N) is constant throughout inflation.
This is referred to as the Lyth bound [3] and leads to [4]:

�� ⇠
⇣ r

0.002

⌘1/2
✓
N

⇤

60

◆
, (3)

where N
⇤

is the number of e-folds at horizon exit, which
for simplicity of presentation we set equal to 60 (other
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values allow for a similar analysis). Therefore, a sub-
Planckian excursion for the inflaton field requires a very
small value of r . 2 · 10�3. Throughout this Letter we
restrict to slow-roll inflation; an extension of the Lyth
bound to fast roll can be found in [5].
The Lyth bound provides an estimate of the field range

given a measurement of r. This approach corresponds to
the rectangular area below the horizontal line in Fig. 1.
However, starting from the same value of r at horizon
crossing, one can imagine di↵erent behaviours r(N) that
give rise to either smaller [6–8] or larger areas [9]. Using
only the value of r as input, the constant line is the sim-
plest and most natural history. For this reason, the Lyth
bound provides an optimal estimate for the correspond-
ing field range.

8
r

1I'  

1I'  

N*N

FIG. 1. Two curves indicating
p

r(N)/8. The central idea is
that both have identical areas and lead to �� = 1. The flat
curve depicts the Lyth bound, while the tilted curve indicates
the improvement when taking the spectral index into account.

We would like to show that this estimate becomes
stronger when one takes the additional information of
the spectral index into account. In particular, given
the redshifted value of the tilt (1) and assuming r to
be small, the dependence of r(N) is tilted upwards at
horizon crossing1. The natural history (whose exact

1
Note that our approach di↵ers from [10, 11], which also include

the spectral tilt in their expressions for the field range: while

these references derive a minimal value for ��, we aim to provide

a generic estimate by making use of its universal properties.
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good indication that no spurious NG features are present in the
actual data set when compared to our simulations. It should be
noted that we found a similarly good level of agreement between
estimators for the non-primordial shapes of point sources and
ISW-lensing, although we chose not to present those results here
in order to focus on the primordial shapes. Finally, regarding the
wavelet pipeline, the lower weight correlation and suboptimal
error bars produce an expected larger scatter when compared to
the other estimators. Nonetheless, the level of agreement is still
of order 1�, which is quite acceptable for consistency checks of
the optimal results. Again, this MC expectation agrees with what
we see in our results on the real data.

7. Results

For our analysis of Planck data we considered foreground-
cleaned maps obtained with the four component separation
methods SMICA, NILC, SEVEM, and C-R. For each map, fNL
amplitudes for the local, equilateral, and orthogonal primordial
shapes have been measured using three (four for SMICA) bispec-
trum estimators described in Sect. 3. The results can be found
in Sect. 7.1. These estimators, as explained earlier, basically use
an expansion of the theoretical bispectrum templates in di↵erent
domains, and truncate the expansion when a high level of corre-
lation with the primordial templates is achieved. These accurate
decompositions, which are highly correlated with each other, are
then matched to the data in order to extract fNL. The di↵erent
expansions are all di↵erent implementations of the maximum-
likelihood estimator given in Eq. (32). So the final estimates are
all expected to be optimal, and measure fNL from nearly identi-
cal fitting templates. As discussed and tested in detail on simu-
lations in Sect. 6, central fNL values from di↵erent methods are
expected to be consistent with each other within about 0.3� fNL .
It is then clear that comparing outputs from both di↵erent esti-
mators and di↵erent component separation methods, as we do,
allows for stringent internal consistency checks and improved
robustness of the final fNL results.

In addition, the binned and modal techniques produce shape-
independent full bispectrum reconstructions in their own di↵er-
ent domains. These reconstructions, discussed in Sect. 7.2, com-
plement the standard fNL measurements in an important way,
since they allow detection of possible NG features in the three-
point function of the data that do not correlate significantly with
the standard primordial shapes. This advantage is shared by the
skew-C` method, also applied to the data. A detection of such
features would either produce a warning that some residual spu-
rious NG e↵ects are still present in the data or provide an in-
teresting hint of “non-standard” primordial NG that is not cap-
tured by the local, equilateral and orthogonal shapes. Additional
constraints for a broad range of specific models are provided
in Sect. 7.3 (see also Sect. 2.3). In Sect. 7.4 we present the
constraints on local NG obtained with Minkowski Functionals.
Finally, in Sect. 7.5 we present our CMB trispectrum results.

7.1. Constraints on local, equilateral and orthogonal fNL

Our goal here is to investigate the standard separable local, equi-
lateral and orthogonal templates used e.g., in previous WMAP
analyses (see e.g., Bennett et al. 2012). When using the modal,
binned, or wavelet estimator, these theoretical templates are ex-
panded approximately (albeit very accurately) using the relevant
basis functions or bins. On the other hand, the KSW estimator by
construction works with the exact templates and, for this reason,
it is chosen as the baseline to provide the final fNL results for

Table 8. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the KSW es-
timator from the SMICA foreground-cleaned map. Both indepen-
dent single-shape results and results marginalized over the point
source bispectrum and with the ISW-lensing bias subtracted are
reported; error bars are 68% CL .

Independent ISW-lensing subtracted

KSW KSW

SMICA

Local . . . . . . . . . 9.8 ± 5.8 2.7 ± 5.8

Equilateral . . . . . �37 ± 75 �42 ± 75

Orthogonal . . . . . �46 ± 39 �25 ± 39

the standard shapes (local, equilateral, orthogonal), see Table 8.
However, both the binned and modal estimators achieve opti-
mal performance and an extremely high correlation for the stan-
dard templates (⇠ 99%), so they are statistically equivalent to
KSW, as demonstrated in the previous section. This means that
we can achieve a remarkable level of cross-validation for our
Planck NG results. We will be able to present consistent con-
straints for the local, equilateral and orthogonal models for all
four Planck foreground-cleaned maps, using three independent
optimal estimators (refer to Table 9). Regarding component sep-
aration methods, we adopt the SMICA map as the default for the
final KSW results given its preferred status among foreground-
separation techniques in Planck Collaboration XII (2013). The
other component separation maps will be used for important
cross-validation of our results and to evaluate potential sensi-
tivity to foreground residuals.

All the results presented in this Section were obtained using
the union mask U73, which leaves 73% of the sky unmasked.
The mask is the union of the confidence masks of the four di↵er-
ent component separation methods, where each confidence mask
defines the region where the corresponding CMB cleaning is
trusted (see Planck Collaboration XII 2013). As will be shown in
Sect. 8.2, results are robust to changes that make the mask larger,
but choosing a significantly smaller mask would leave some NG
foreground contamination. For the linear term CMB and noise
calibration, and error bar determination, we used sets of realistic
FFP6 maps that include all steps of data processing, and have
realistic noise and beam properties (Planck Collaboration ES
2013). The simulations were also lensed using the Lenspix al-
gorithm and filtered through the component separation pipelines.

In Table 8 we show results for the combination of the KSW
estimator and the SMICA map, at a resolution of `max = 2500.
We present both “independent” single-shape results and “ISW-
lensing subtracted” ones. The former are obtained by directly
fitting primordial templates to the data. For the latter, two ad-
ditional operations have been performed. In the first place, as
the name indicates, they have been corrected by subtracting
the bias due to the correlation of the primordial bispectra to
the late-time ISW-lensing contribution (Mangilli & Verde 2009;
Junk & Komatsu 2012; Hanson et al. 2009b, see Sect. 5.2). In
addition, a joint fit of the primordial shape with the (Poissonian)
point source bispectrum amplitude extracted from the data
has been performed on the results marked “ISW-lensing sub-
tracted”.10 Since the ISW-lensing bispectrum is peaked on

10 More precisely, in the subtracted ISW-lensing results the equilateral
and orthogonal primordial shapes are also fitted jointly, although this
has a nearly negligible impact on the final result because the two shapes
are by construction nearly perfectly uncorrelated.
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where PR is the amplitude of the power spectrum. Currently the best constraint on its amplitude

comes from the CMB anisotropy measurement by the WMAP satellite, P 1/2
R ≃ 4.3 × 10−5 [1].

Although originally taken as a simple ansatz, this shape dependence turns out to be physically
relevant for many models which predict a sensible non-Gaussianity. The reason is that eq. (4)
describes (at leading order) the most generic form of non-Gaussianity which is local in real space.
This form is therefore expected for models where non-linearities develop outside the horizon. This
happens for all the models in which the fluctuations of an additional light field, different from the
inflaton, contribute to the curvature perturbations we observe. In this case non-linearities come from
the evolution of this field outside the horizon and from the conversion mechanism which transforms
the fluctuations of this field into density perturbations. Both these sources of non-linearity give a
non-Gaussianity of the form (4) because they occur outside the horizon. Examples of this general
scenario are the curvaton models [8], models with fluctuations in the reheating efficiency [9, 10] and
multi-field inflationary models [17] (4).

Being local in position space, eq. (6) describes correlation among Fourier modes of very different
k. It is instructive to take the limit in which one of the modes becomes of very long wavelength
[13], k3 → 0, which implies, due to momentum conservation, that the other two k’s become equal
and opposite. The long wavelength mode ζk⃗3

freezes out much before the others and behaves as
a background for their evolution. In this limit Flocal is proportional to the power spectrum of the
short and long wavelength modes

Flocal ∝
1

k3
3

1

k3
1

. (7)

This means that the short wavelength 2-point function ⟨ζk⃗1
ζ−k⃗1

⟩ depends linearly on the background
wave ζk⃗3

⟨ζk⃗3
ζk⃗1

ζ−k⃗1
⟩ ∝ ⟨ζk⃗3

ζ−k⃗3
⟩

∂

∂ζk⃗3

⟨ζk⃗1
ζ−k⃗1

⟩ . (8)

From this point of view we expect that any distribution will reduce to the local shape (6) in the
degenerate limit we considered5, if the derivative with respect to the background wave does not
vanish.

In standard single field slow-roll inflation the limit k3 → 0 is quite easy to predict. As pointed out
by Maldacena [13], different points along the background wave are equivalent to shift in time along
the inflaton trajectory, so that the derivative with respect to the background wave is proportional
to the tilt of the scalar spectrum. This can be explicitly checked in the full expression of the 3-point
function [13]

Fstand (⃗k1, k⃗2, k⃗3) =
1

8
(2π)4P 2

R ·
1

∏

k3
i

⎡

⎣(3ϵ − 2η)
∑

i

k3
i + ϵ

∑

i̸=j

kik
2
j + 8ϵ

∑

i>j k2
i k

2
j

kt

⎤

⎦ , (9)

where ϵ and η are the usual slow-roll parameters and kt ≡ k1 + k2 + k3. In the limit k3 → 0 eq. (9)
goes as

Fstand(⃗k3 → 0) ∝ 2(η − 3ϵ)
1

k3
1

1

k3
2

= (ns − 1)
1

k3
1

1

k3
2

. (10)

4In these models additional contributions to F not of the local form (6) can be present; they describe non-
Gaussianities generated at horizon crossing. Nevertheless the local contribution is dominant because it has
time to develop outside the horizon for many Hubble times before the final conversion to density perturbations
[18].

5The derivative with respect to the background cannot depend on the relative orientation of k⃗1 and k⃗3,
because this would need a derivative acting on the background giving a subleading contribution in the limit
k⃗3 → 0.
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Three point-function in single field slow roll inflation
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Abstract

The consistency relation for the 3-point function of the CMB is a very powerful observational signa-

ture which is believed to be true for every inflationary model in which there is only one dynamical

degree of freedom. Its importance relies on the fact that deviations from it might be detected in

next generation experiments, allowing us to rule out all single field inflationary models. After mak-

ing more precise the already existing proof of the consistency relation, we use a recently developed

effective field theory for inflationary perturbations to provide an alternative and very explicit proof

valid at leading non trivial order in slow roll parameters.

1 Introduction

In the last few years there has been great progress in understanding the non-Gaussianity of the

primordial spectrum of density fluctuations. Starting from Maldacena’s first full computation of

the non-Gaussian features in single field slow roll inflation [1], several alternative models have been

proposed that produce a large and in principle detectable level of non-Gaussianities [2, 3, 4, 6]

through different mechanisms for generating density fluctuations in the quasi de Sitter inflationary

phase. At the same time, from the experimental side, the WMAP satellite has allowed for a huge

improvement in our measurement of the properties of the CMB. Observations seem to confirm the

generic predictions of standard slow roll inflation [10]. Limits on the primordial non-Gaussianity of

the CMB have been significantly improved [11], but for the moment the data are consistent with a

non-Gaussian signal.

The fact that the CMB seems to be rather Gaussian means that the non-Gaussian component

must be rather small. This makes it clear that the most important observable for non-Gaussianities

will be the 3-point function of density perturbations [12]

⟨ζk⃗1
ζk⃗2
ζk⃗3

⟩ (1)

where ζk⃗1
is the density fluctuation of comoving slices in Fourier space.

As pointed out in [14], due to symmetry reasons, the 3-point function is a real function of two

variables. While on one hand this means that it contains a lot of information about the inflationary

model, on the other hand this also means that there really could be a large number of different
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good indication that no spurious NG features are present in the
actual data set when compared to our simulations. It should be
noted that we found a similarly good level of agreement between
estimators for the non-primordial shapes of point sources and
ISW-lensing, although we chose not to present those results here
in order to focus on the primordial shapes. Finally, regarding the
wavelet pipeline, the lower weight correlation and suboptimal
error bars produce an expected larger scatter when compared to
the other estimators. Nonetheless, the level of agreement is still
of order 1�, which is quite acceptable for consistency checks of
the optimal results. Again, this MC expectation agrees with what
we see in our results on the real data.

7. Results

For our analysis of Planck data we considered foreground-
cleaned maps obtained with the four component separation
methods SMICA, NILC, SEVEM, and C-R. For each map, fNL
amplitudes for the local, equilateral, and orthogonal primordial
shapes have been measured using three (four for SMICA) bispec-
trum estimators described in Sect. 3. The results can be found
in Sect. 7.1. These estimators, as explained earlier, basically use
an expansion of the theoretical bispectrum templates in di↵erent
domains, and truncate the expansion when a high level of corre-
lation with the primordial templates is achieved. These accurate
decompositions, which are highly correlated with each other, are
then matched to the data in order to extract fNL. The di↵erent
expansions are all di↵erent implementations of the maximum-
likelihood estimator given in Eq. (32). So the final estimates are
all expected to be optimal, and measure fNL from nearly identi-
cal fitting templates. As discussed and tested in detail on simu-
lations in Sect. 6, central fNL values from di↵erent methods are
expected to be consistent with each other within about 0.3� fNL .
It is then clear that comparing outputs from both di↵erent esti-
mators and di↵erent component separation methods, as we do,
allows for stringent internal consistency checks and improved
robustness of the final fNL results.

In addition, the binned and modal techniques produce shape-
independent full bispectrum reconstructions in their own di↵er-
ent domains. These reconstructions, discussed in Sect. 7.2, com-
plement the standard fNL measurements in an important way,
since they allow detection of possible NG features in the three-
point function of the data that do not correlate significantly with
the standard primordial shapes. This advantage is shared by the
skew-C` method, also applied to the data. A detection of such
features would either produce a warning that some residual spu-
rious NG e↵ects are still present in the data or provide an in-
teresting hint of “non-standard” primordial NG that is not cap-
tured by the local, equilateral and orthogonal shapes. Additional
constraints for a broad range of specific models are provided
in Sect. 7.3 (see also Sect. 2.3). In Sect. 7.4 we present the
constraints on local NG obtained with Minkowski Functionals.
Finally, in Sect. 7.5 we present our CMB trispectrum results.

7.1. Constraints on local, equilateral and orthogonal fNL

Our goal here is to investigate the standard separable local, equi-
lateral and orthogonal templates used e.g., in previous WMAP
analyses (see e.g., Bennett et al. 2012). When using the modal,
binned, or wavelet estimator, these theoretical templates are ex-
panded approximately (albeit very accurately) using the relevant
basis functions or bins. On the other hand, the KSW estimator by
construction works with the exact templates and, for this reason,
it is chosen as the baseline to provide the final fNL results for

Table 8. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the KSW es-
timator from the SMICA foreground-cleaned map. Both indepen-
dent single-shape results and results marginalized over the point
source bispectrum and with the ISW-lensing bias subtracted are
reported; error bars are 68% CL .

Independent ISW-lensing subtracted

KSW KSW

SMICA

Local . . . . . . . . . 9.8 ± 5.8 2.7 ± 5.8

Equilateral . . . . . �37 ± 75 �42 ± 75

Orthogonal . . . . . �46 ± 39 �25 ± 39

the standard shapes (local, equilateral, orthogonal), see Table 8.
However, both the binned and modal estimators achieve opti-
mal performance and an extremely high correlation for the stan-
dard templates (⇠ 99%), so they are statistically equivalent to
KSW, as demonstrated in the previous section. This means that
we can achieve a remarkable level of cross-validation for our
Planck NG results. We will be able to present consistent con-
straints for the local, equilateral and orthogonal models for all
four Planck foreground-cleaned maps, using three independent
optimal estimators (refer to Table 9). Regarding component sep-
aration methods, we adopt the SMICA map as the default for the
final KSW results given its preferred status among foreground-
separation techniques in Planck Collaboration XII (2013). The
other component separation maps will be used for important
cross-validation of our results and to evaluate potential sensi-
tivity to foreground residuals.

All the results presented in this Section were obtained using
the union mask U73, which leaves 73% of the sky unmasked.
The mask is the union of the confidence masks of the four di↵er-
ent component separation methods, where each confidence mask
defines the region where the corresponding CMB cleaning is
trusted (see Planck Collaboration XII 2013). As will be shown in
Sect. 8.2, results are robust to changes that make the mask larger,
but choosing a significantly smaller mask would leave some NG
foreground contamination. For the linear term CMB and noise
calibration, and error bar determination, we used sets of realistic
FFP6 maps that include all steps of data processing, and have
realistic noise and beam properties (Planck Collaboration ES
2013). The simulations were also lensed using the Lenspix al-
gorithm and filtered through the component separation pipelines.

In Table 8 we show results for the combination of the KSW
estimator and the SMICA map, at a resolution of `max = 2500.
We present both “independent” single-shape results and “ISW-
lensing subtracted” ones. The former are obtained by directly
fitting primordial templates to the data. For the latter, two ad-
ditional operations have been performed. In the first place, as
the name indicates, they have been corrected by subtracting
the bias due to the correlation of the primordial bispectra to
the late-time ISW-lensing contribution (Mangilli & Verde 2009;
Junk & Komatsu 2012; Hanson et al. 2009b, see Sect. 5.2). In
addition, a joint fit of the primordial shape with the (Poissonian)
point source bispectrum amplitude extracted from the data
has been performed on the results marked “ISW-lensing sub-
tracted”.10 Since the ISW-lensing bispectrum is peaked on

10 More precisely, in the subtracted ISW-lensing results the equilateral
and orthogonal primordial shapes are also fitted jointly, although this
has a nearly negligible impact on the final result because the two shapes
are by construction nearly perfectly uncorrelated.
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Summary

If ns -1 is proportional to 1/N there is a ``forbidden 
region” in the ns-r plane. 	

!
There are clear targets for non-G where even an upper 
limit becomes very informative. 	



