PLANCK 2014 THE MICROWAVE SKY IN TEMPERATURE AND POLARIZATION

Zhiqi Huang on behalf of Planck Collaboration

3 December 2014

1 Introduction

2 Stacking Methods

3 Statistics

4 Applications

5 Conclusions

WMAP7 Stacking (source: Komatsu et al. 2011)

resolution: FWHM 30 arcmin

c.f. Enrique's talk for basic stacking results.

Planck 2014: 7, 0

resolution: FWHM 15 arcmin

Peaks are selected above a threshold $|T_{\text{peak}}| > \nu \sqrt{\langle T^2 \rangle}$ ($\nu = 0$ here).

resolution: FWHM 15 arcmin

esa

Peaks are selected above a threshold $|T_{\text{peak}}| > \nu \sqrt{\langle T^2 \rangle}$ ($\nu = 0$ here).

flat-sky polar coor. (ϖ , ϕ):

$$\sigma = 2\sin\frac{\theta}{2}$$

$$Q_r = -Q\cos 2\phi - U\sin 2\phi$$

$$U_r = -U\cos 2\phi + Q\sin 2\phi$$

The Stacking Family

Three key elements:

A What to stack? (cosmic field u)

B Where to stack? (selection of patches, e.g., peaks)

C How to stack? (patch orientations)

"where" and "how" give constrained parameter(s) q;

	WMAP & Planck 2013	Planck 2014
What	T, Q, U, Q_r, U_r	$T, Q, U, Q_r, U_r, E, B, Q_T, U_T, \zeta_{dv}, \dots$
Where	T peaks	<i>T</i> , <i>E</i> , <i>B</i> , $Q^2 + U^2$, $Q_T^2 + U_T^2$, ζ_{dv} peaks
How	unoriented	oriented and unoriented

For Gaussian fields,

 $\langle u|q$; peak, orientation $\rangle = \langle uq^{\dagger} \rangle \langle qq^{\dagger} \rangle^{-1} \langle q|$ peak, orientation \rangle .

First derivative vanishes on the peak. Need to use the 2nd derivatives.

Intuitively (flat-sky limit): $Q_T \equiv \nabla^{-2} (\partial_y^2 - \partial_x^2) T, U_T \equiv -2\nabla^{-2} (\partial_x \partial_y) T$

Slightly non-intuitive (on the sphere): $Q_T(\mathbf{n}) \pm i U_T(\mathbf{n}) \equiv \sum_{l,m} \left[\int T(\mathbf{n}') Y_{lm}^*(\mathbf{n}') d^2 \mathbf{n}' \right]_{\pm 2} Y_{lm}(\mathbf{n})$

Orient the patch such that U_T vanishes in the centre. $\langle u|q$; peak, orientation $\rangle(\varpi, \phi)$ decomposes to $\cos m\phi$, m = 0, 2, 4.

- Planck 2014: component separated full-mission maps. (only SMICA shown in this talk, others are quantitatively similar.)
- FFP8: component separated maps from simulated Planck full-mission maps, assuming a fiducial cosmology (Planck 2013 best-fit).
- Noise-free: Random-Gaussian maps from the same fiducial cosmology, assuming perfect observation.
- Derived maps: E, B, and ζ_{dv} maps. ζ_{dv} is visibility-weighted line-of-sight integral of the primordial curvature fluctuations ζ .
- All polarization maps are high-pass filtered maps.

Oriented Stacking: T on T peaks

peak threshold v = 0, resolution FWHM 15 arcmin:

Angular dependence $(\cos m\phi, m = 0, 2)$ Noise has no noticable impact.

esa

Preliminary

Oriented Stacking: Q on T peaks

peak threshold v = 0, resolution FWHM 15 arcmin:

Angular dependence $(\cos m\phi, m = 0, 2, 4)$ Again noise has no noticable impact.

Preliminary

Planck 2014 (peak threshold v = 0; resolution FWHM 15 arcmin)

Preliminary

Stacking Primordial Curvature

Planck 2014 (peak threshold v = 0; resolution FWHM 15 arcmin)

esa

Planck 2014 (peak threshold v = 0; resolution FWHM 15 arcmin)

Preliminary

- Cosmological contribution to $\delta T_m(\varpi)$ are mostly from low ℓ where cosmic variance is large.
- Statistical isotropy \Rightarrow : $\delta T_m(\varpi) = \varpi^m (c_0 + c_1 \varpi^2 + c_2 \varpi^4 + ...)$
- Truncate at order n and compute the mean and cov. of $(c_0, c_1, c_2, \dots, c_n)$.
- Compare χ^2 for Planck map and sims: p-value := $\chi^2_{sim.} > \chi^2_{data}$ rate.

Statistics: T on oriented T peaks

24 uniform bins in $0 < \varpi < 2$ degrees (pixel size 5 arcmin)

Statistics: Comparison of Maps

Cesa

1000 FFP8 sims.: use subset#1 to compute cov. , and use subset#2 compute p -value							
Example: Truncation $n = 4$ (5 d.o.f. c_0, c_1, c_2, c_3, c_4)							
map	subset#1	subset#2	EIL D-V ILLE	$\delta T_2 p$ -value			
SMICA	1-500	501-1000	ו.33	0.22			
SMICA	501-1000	1,50	0 27	0.23			
SMICA	1-1000	. 50-7 -0	0.29	0.25			
SMICA	1-10	1- 200	0.30	0.22			
COMMANDER	106	1-1000	0.21	0.24			
NILC	1-1700	1-1000	0.54	0.33			
SEV EIV.	1-1000	1-1000	0.38	0.39			

Statistics: Q, U on $Q_T^2 + U_T^2$ peaks

m = 4

Preliminary

Small discrepancy around $\varpi = 0$ is due to

noise mismatch on small scales in FFP8 simulations.

planck

Noise bias does not spoil the main feature.

Planck 2014 (Smica map; Common Mask)

Most asymmetric direction $l = 191^{\circ}$, b = 0, *p*-value 0.041

esa

Q stacked on $Q^2 + U^2$ oriented peaks (oriented s.t. *U* vanishes in the centre). Patch size: $\varpi \le 7^\circ$; threshold $\nu = 1$

T map FWHM 2°; Q, U maps FWHM 15 arcmin.

esa

Q stacked on $Q^2 + U^2$ oriented peaks (oriented s.t. *U* vanishes in the centre). Patch size: $\varpi \le 7^\circ$; threshold $\nu = 1$

 $T \text{ map FWHM } 2^\circ; Q, U \text{ maps FWHM } 15 \text{ arcmin.}$

Preliminary

planck

Planck 2014 Component Separated Commander Dust Map

Q stacked on $Q^2 + U^2$ oriented peaks (oriented s.t. U vanishes in the centre).

Patch size: $\varpi \le 7^{\circ}$; threshold $\nu = 1$

T map FWHM 2°; Q, U maps FWHM 15 arcmin.

esa

Q stacked on $Q^2 + U^2$ oriented peaks (oriented s.t. *U* vanishes in the centre). Patch size: $\varpi \le 7^\circ$; threshold $\nu = 1$

T map FWHM 2°; Q, U maps FWHM 15 arcmin.

esa

Preliminary

Q stacked on $Q^2 + U^2$ oriented peaks (oriented s.t. *U* vanishes in the centre). Patch size: $\sigma \le 7^\circ$; threshold $\nu = 1$

Preliminary

T map FWHM 2° ; Q, U maps FWHM 15 arcmin.

esa

Q stacked on $Q^2 + U^2$ oriented peaks (oriented s.t. *U* vanishes in the centre). Patch size: $\sigma \le 7^\circ$; threshold $\nu = 1$

T map FWHM 2° ; Q, U maps FWHM 15 arcmin.

esa

Preliminary

Conclusions

SA

- planck
- Planck 2014 I&S explores a large family of novel stacking methods.
- Unoriented stacks of T and Q_r probe m = 0 TT, TE, EE correlation functions.
- Oriented stacks probe either m = 0, 2 or m = 0, 2, 4 TT, TE, EE correlation functions, many spatially localized probes of Random Fields, Gaussian or not.
- Statistics of stacked Planck 2014 data is compatible with the FFP8 ensemble - no "smoking gun" anomalies.
- Stacking gives a complimentary approach for probing hemispherical asymmetry.
- Stacked oriented dust maps are more directional than CMB stacks. A future test for contamination?

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada.

How to derive a ζ_{dy} map.

 $\zeta_{\rm dv}(\mathbf{n}) \equiv \int_0^{\eta_0} \zeta_{\rm prim} (\mathbf{n}(\eta_0 - \eta)) \dot{\tau} e^{-\tau} d\eta$, where $\tau(\eta)$ is the optical depth and η conformal time. $\zeta_{\rm prim}(\mathbf{x})$ is the primordial curvature fluctuations.

In Harmonic space (given measured T_{lm}):

$$\begin{split} \zeta_{lm} &= \zeta_{lm}|_{\text{constrained}} + \zeta_{lm}|_{\text{unconstrained}} \\ \zeta_{lm}|_{\text{constrained}} &= \frac{C_l^{T\zeta}}{C_l^{TT} + N_l} T_{lm} \\ \zeta_{lm}|_{\text{unconstrained}} \text{ is a random Gaussian field with power} \\ Z_l &= C_l^{\zeta\zeta} - \frac{(C_l^{T\zeta})^2}{C_l^{TT} + N_l}. \\ C_l^{TT} \text{ and } C_l^{T\zeta} \text{ are computed from best-fit } \Lambda\text{CDM. Noise spectrum} \\ N_l \text{ is computed from FFP8 #0 (for the scales we are considering} \\ N_l \ll C_l^{TT} \text{ so doesn't matter which model to use).} \end{split}$$

