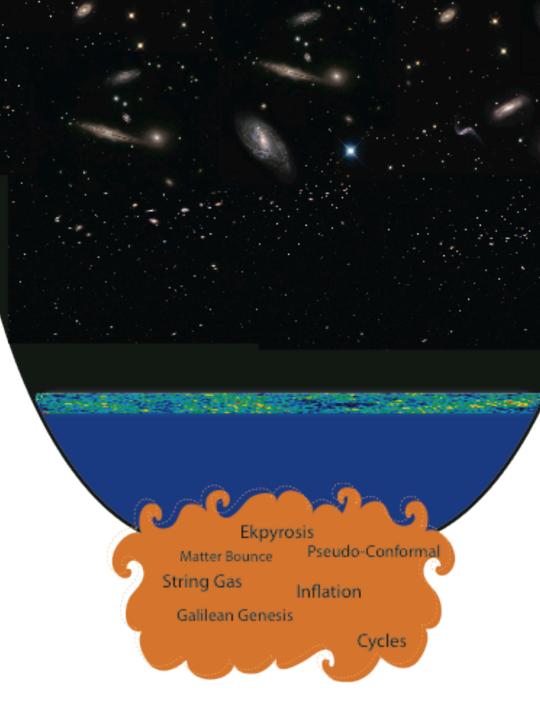
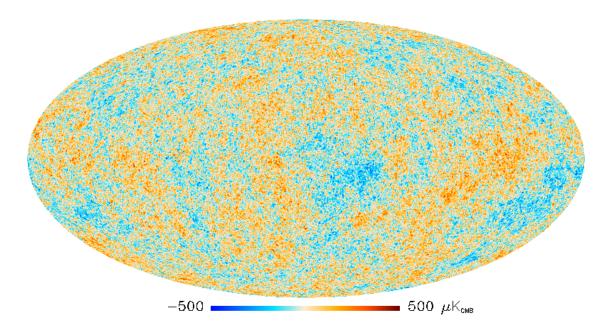
Alternatives To Inflation

Jean-Luc Lehners

MPI for Gravitational Physics Albert-Einstein-Institute

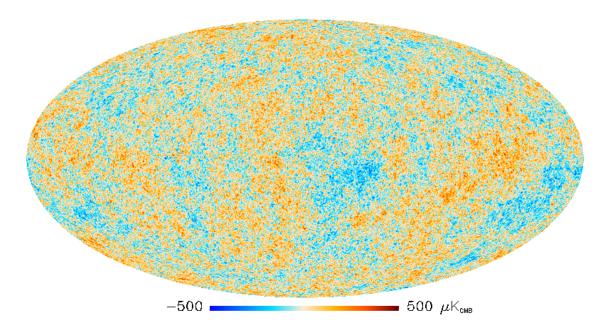


PLANCK data



- A simple universe: approximately homogeneous, isotropic, flat
- With, in addition, nearly scale-invariant, nearly Gaussian, density fluctuations at early times
- Currently no evidence for primordial gravitational waves

PLANCK data



These features cannot be explained by the hot Big Bang picture!

Inflationary Phase

 Initial flatness & isotropy can be explained by an early phase of inflation – consider the Friedmann equation:

$$3\left(\frac{\dot{a}}{a}\right)^2 \equiv 3H^2 = \sum_i \rho_i \quad \text{(energy densities)}$$
$$= -\frac{\rho_{curv,0}}{a^2} + \frac{\rho_{mat,0}}{a^3} + \frac{\rho_{rad,0}}{a^4} + \frac{\rho_{aniso,0}}{a^6} + \frac{\rho_{\phi,0}}{a^{3(1+w_{\phi})}}$$
$$w = \frac{pressure}{\rho}$$

In an expanding universe, scalar matter with w < - 1/3 comes to dominate over anything else, i.e. suppresses curvature and anisotropies, and leads to accelerated expansion:

$$3\frac{\ddot{a}}{a} = -\frac{1}{2}\rho(1+3w) > 0$$

[Brout, Englert & Gunzig; Guth; Linde; Albrecht & Steinhardt, ...]

Ekpyrotic Phase

Initial flatness & isotropy can also be explained by a phase of slow contraction – consider the Friedmann equation:

$$3\left(\frac{\dot{a}}{a}\right)^2 \equiv 3H^2 = \sum_i \rho_i \quad \text{(energy densities)}$$
$$= -\frac{\rho_{curv,0}}{a^2} + \frac{\rho_{mat,0}}{a^3} + \frac{\rho_{rad,0}}{a^4} + \frac{\rho_{aniso,0}}{a^6} + \frac{\rho_{\phi,0}}{a^{3(1+w_{\phi})}}$$

In an contracting universe, scalar matter with a large pressure (i.e. w > 1, negative potential) comes to dominate over anything else, i.e. suppresses curvature and anisotropies!

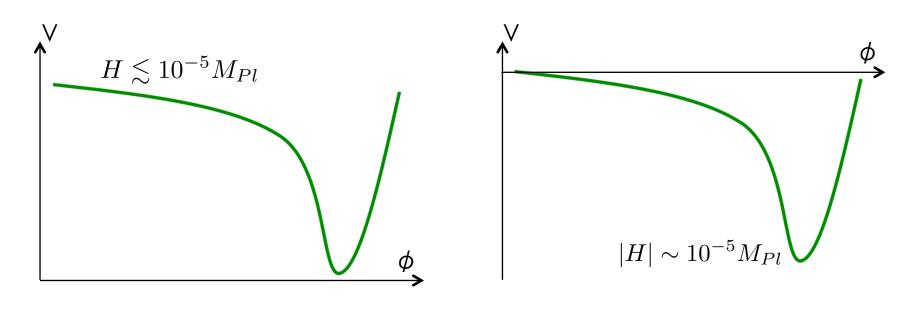
$$w = \frac{p}{\rho} = \frac{\frac{1}{2}\dot{\phi}^2 - V}{\frac{1}{2}\dot{\phi}^2 + V} > 1 \quad \leftrightarrow \quad V < 0$$

Ekpyrotic phase must be followed by a bounce

[Khoury, Ovrut, Steinhardt & Turok]

Broad Features

 Inflation and Ekpyrosis are the only two dynamical mechanisms that can explain the broad features seen in the CMB



Inflation

Ekpyrosis

Detailed Features: Amplification of Quantum Fluctuations

Scalar fluctuations:

$$S_{(2)} \sim \int d\tau d^3 x \, \frac{1}{\tau^2} (\partial \zeta)^2$$

- In the quasi-de Sitter limit, inflation generates a nearly scaleinvariant spectrum of curvature perturbations with a (finetuned) amplitude H²/ ε
- These perturbations obey Gaussian statistics to a good approximation
- Similarly, nearly scale-invariant tensor fluctuations are generated with amplitude H²

[Chibisov & Mukhanov; Starobinsky; Hawking; Guth & Pi; Bardeen, Steinhardt & Turner;...]

Alternative mechanisms for producing the scalar fluctuations

Many alternatives exist – typically they involve a second field feeling "as if" in de Sitter space:

$$S_{(2)} \sim \int d\tau d^3x \, \frac{1}{\tau^2} (\partial \chi)^2$$

In a second stage, perturbations in this field get transferred to the curvature perturbations via a conversion mechanism, such as the curvaton, modulated reheating,...

Examples

Ekpyrosis (non-minimally coupled):

$$\mathcal{L} = -\frac{1}{2}(\partial\phi)^2 + e^{c\phi} - \frac{1}{2}e^{c\phi}(\partial\chi)^2$$

[Li; Gao, Qiu & Saridakis; Fertig, JLL & Mallwitz, Ijjas, JLL & Steinhardt]

[Hinterbichler & Khoury]

Conformal rolling

$$\mathcal{L} = -\frac{1}{2}(\partial\phi)^2 + \lambda\phi^4 - \frac{1}{2}\phi^2(\partial\chi)^2$$

[Rubakov]

Galilean Genesis

$$\mathcal{L} = \mathcal{L}_{\phi}(\phi, \partial\phi, \partial^2\phi) - \frac{1}{2}\phi^2(\partial\chi)^2$$

-2

[Creminelli, Nicolis & Trincherini]

In each case the background generates the pre-factor

Examples

Ekpyrosis (non-minimally coupled):

$$\mathcal{L} = -\frac{1}{2}(\partial\phi)^2 + e^{c\phi} - \frac{1}{2}e^{c\phi}(\partial\chi)^2$$

[Li; Gao, Qiu & Saridakis; Fertig, JLL & Mallwitz, Ijjas, JLL & Steinhardt]

■ Pseudo-conformal mechanism so(4,2) → so(4,1) [H

[Hinterbichler & Khoury]

Conformal rolling

$$\mathcal{L} = -\frac{1}{2}(\partial\phi)^2 + \lambda\phi^4 - \frac{1}{2}\phi^2(\partial\chi)^2$$

[Rubakov]

Galilean Genesis

$$\mathcal{L} = \mathcal{L}_{\phi}(\phi, \partial\phi, \partial^2\phi) - \frac{1}{2}\phi^2(\partial\chi)^2$$

[Creminelli, Nicolis & Trincherini]

- In all cases models exist with small 3-pt function
- Biggest difference with inflation: they generate no tensor modes

- A special case: contracting matter phase
- Here no second scalar is needed

$$a \propto (-t)^{2/3}$$
$$\propto \tau^2 \longrightarrow 0$$
$$\rightarrow \frac{a''}{a} = \frac{2}{\tau^2}$$

Issues:

- Background evolution is unstable (w=0 -> anisotropies grow)
- A very large tensor amplitude gets produced

 $(r = 16 \epsilon = 24)$

The hope is that the bounce could amplify scalar modes relative to tensor modes

Remarks about tensors

 A more direct probe of the background dynamics & hence usually no gravity waves arise in a contracting phase (because slow contraction is required to avoid the catastrophic growth of anisotropies)

However:

- A matter phase even over-produces tensors
- Modified gravity theories can also lead to gravity waves in a contracting universe, e.g. scalar-tensor gravity

$$\mathcal{L} = \sqrt{-g} \left[f(\phi) \frac{R}{2} + P(X, \phi) \right] + \mathcal{L}_{matter}(g)$$

$$\frac{1}{\tau^2} \quad \text{Non-minimal coupling can lead to}$$
scale-invariant tensor modes

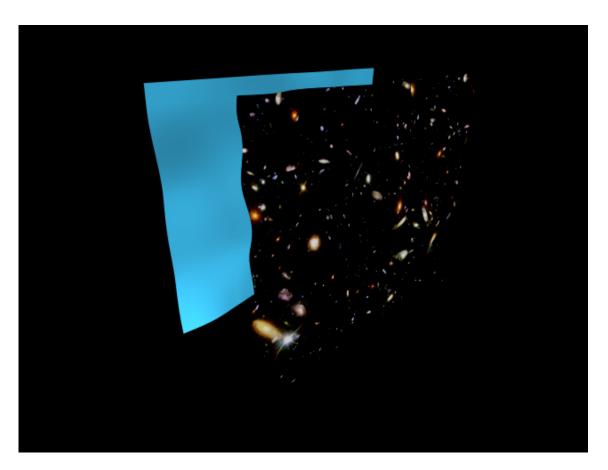
[Li]

Maybe tensor modes can be produced at the bounce?

■ Many alternative models rely on an early contracting phase → they require a bounce

 Inflation might have been preceded by a bounce from an earlier phase

Brane Collisions



- A brane collision would look like a big bang to a brane-bound observer like us
- Concrete microphysical model for a bounce
- At the brane collision matter and radiation can be created, thus explaining their origin
- Matter on the second brane appears as dark matter
- Really nice idea, but how do we calculate the consequences?

[Khoury, Ovrut, Steinhardt & Turok]

Non-Singular Bounces

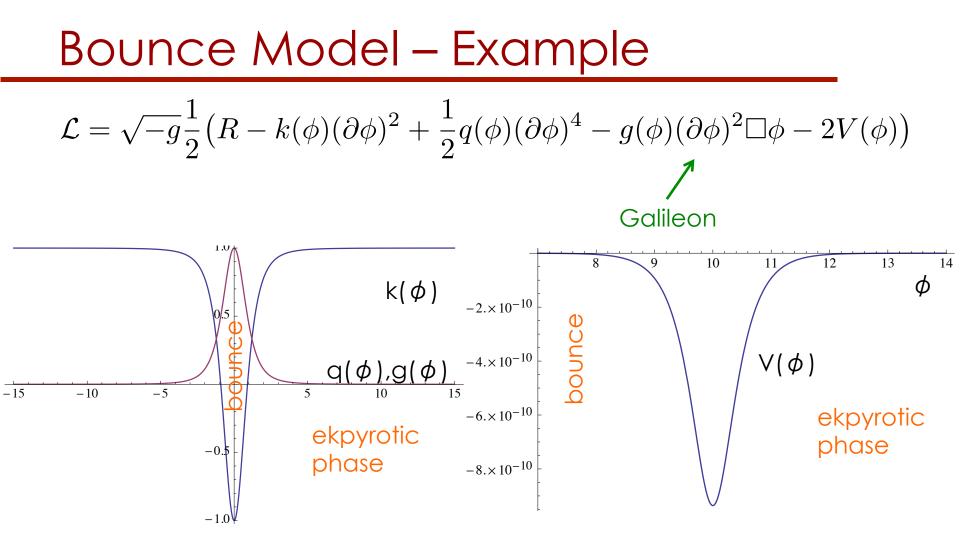
 Non-singular bounces in a flat FLRW universe require a violation of the null energy condition (NEC)

$$\dot{H} = -\frac{1}{2}(\rho + p) > 0 \quad \rightarrow \rho + p < 0$$

- Scalar fields with higher-derivative kinetic terms can lead to NEC violation without the appearance of ghost fluctuations [Arkani-Hamed et al.; Nicolis, Rattazzi & Trincherini]
- Such models have been constructed in non-supersymmetric theories, but have not been derived from a fundamental framework, such as string theory, yet [Buchbinder, Khoury &

[Buchbinder, Khoury & Ovrut; Creminelli & Senatore; Easson, Sawicki & Vikman]

 Have recently shown that non-singular bounces can exist in supergravity
 [Koehn, JLL & Ovrut]

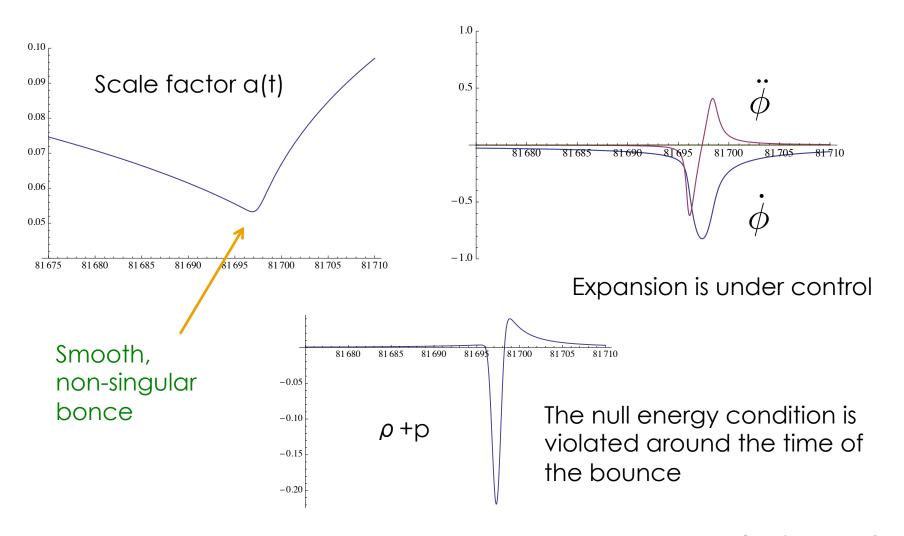


All of the kinetic terms contribute to NEC violation:

$$\rho + p = k(\phi)\dot{\phi}^{2} + q(\phi)\dot{\phi}^{4} + g(\phi)\dot{\phi}^{2}\ddot{\phi} - 3g(\phi)H\dot{\phi}^{3} + \dot{g}(\phi)\dot{\phi}^{3}$$

[Cai, Easson & Brandenberger]

Bounce Model – Numerical Example

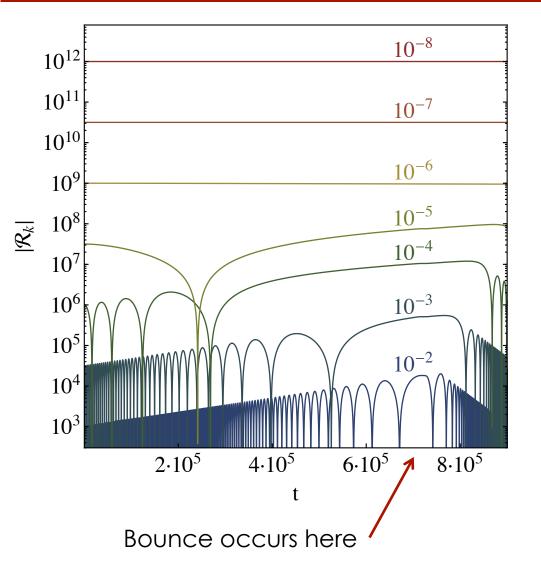


[Koehn, JLL & Ovrut]

Comments

- There are no ghost fluctuations, despite the NEC violation Supersymmetry and NEC violation can coexist!
- In this bounce there is a gradient instability must be improved!
- The model uses many tunings it will be important to see if simpler models can be constructed
- Can this model, or any other non-singular bouncing model, be embedded in string theory?
- What happens to the cosmological perturbations as they go through the bounce?

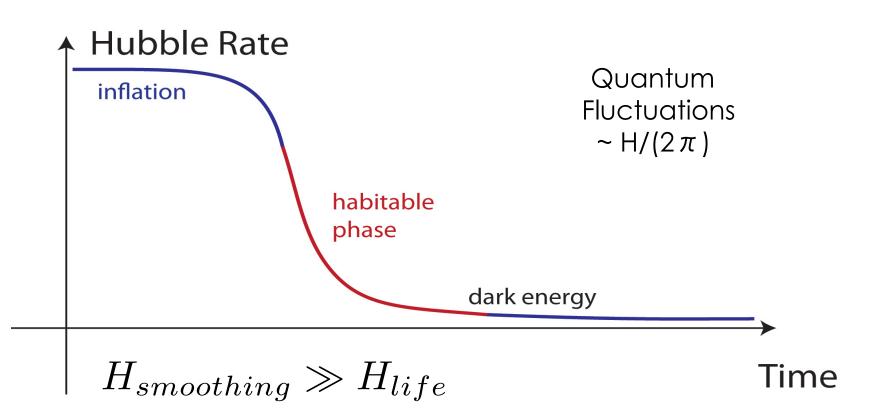
Perturbations Through the Bounce



- The great advantage of non-singular bounces is that one can calculate everything explicitly
- Can see that longwavelength perturbations are preserved across bounce
- Hence one obtains a reliable history from the generation of fluctuations up until today

[Battarra, Koehn, JLL & Ovrut]

Big Issues: Eternal Inflation

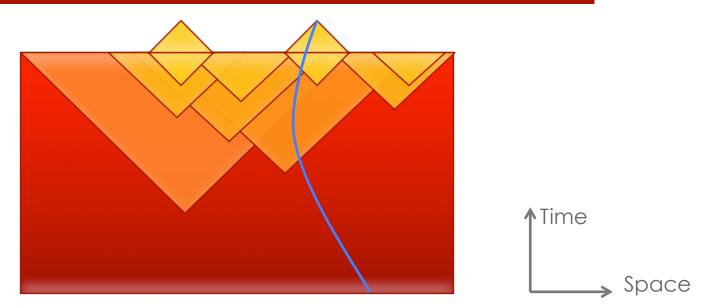


Large upwards quantum fluctuations get amplified and effectively evolve as separate universes

→ Quantum instability

[Vilenkin; Steinhardt]

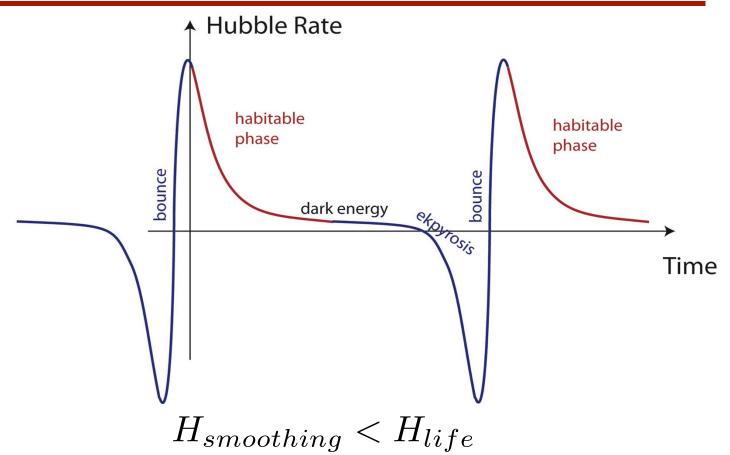
Leads to an Inflationary Multiverse



- A measure is required to regulate the infinities that arise in this way
 [Garriga, Vilenkin; Susskind;...]
- Without a measure, (eternal) inflation has no predictive power at all
- By contrast, in a contracting phase, weighting by physical volume gives sensible results

[Johnson & JLL]

Counter-example: cyclic model



Large upwards quantum fluctuations simply cause a time delay in the cycle

Quantum stability

[Johnson & JLL]

Initial Conditions

Can Semi-Classical Quantum Gravity, together with the No-Boundary Proposal, address the question of initial conditions?

Can we understand why space and time already behaved so classically in the early universe?

Review of the No-Boundary Proposal

$$\Psi(b,\chi) = \int_{\mathcal{C}} \mathcal{D}a\mathcal{D}\phi e^{-S_E(a,\phi)}$$

$$\approx e^{-S_{E,ext}(b,\chi)}$$
regular
(b,\chi)

- The wavefunction is given by a path integral over all possible four-geometries that are regular in the past (i.e. the possible paths are restricted)
- Hartle-Hawking b.c.: the universe is finite and self-contained
- No-Boundary Proposal is supported by AdS/CFT
- Saddle point approximation: the geometries that are an extremum of the action with the required boundary conditions are typically complex "fuzzy" instantons

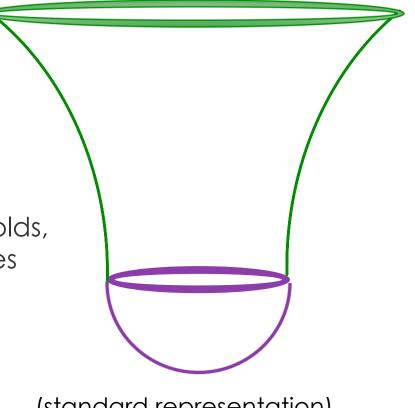
[Hartle, Hawking & Hertog]

Inflationary Instantons

- The bottom of the instanton is approximately a half-4-sphere
- Probability

$$e^{-2Re(S)} = e^{\frac{24\pi^2}{H^2}}$$

 If inflation lasts more than a few e-folds, a classical inflating universe emerges

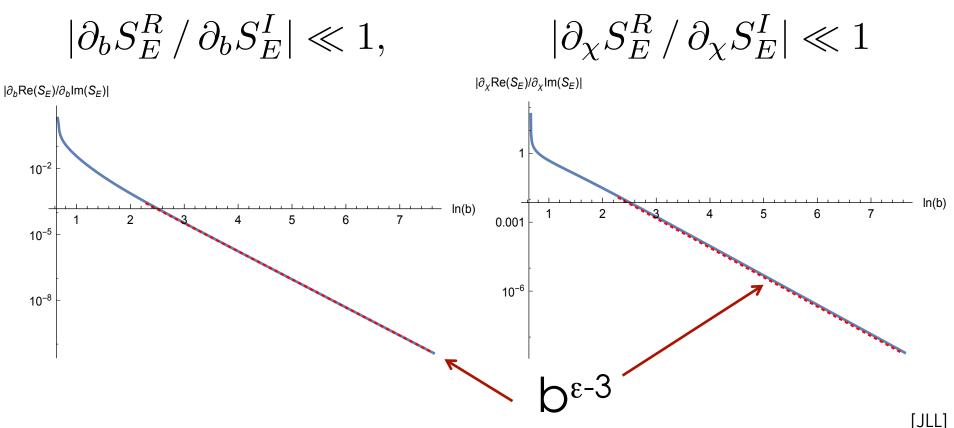


(standard representation)

[Hartle, Hawking & Hertog]

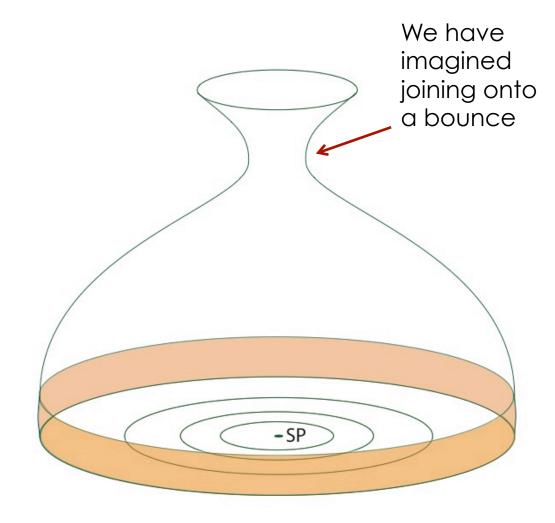
WKB Classicality - Inflation

As the inflationary phase proceeds, the wavefunction of the universe becomes increasingly classical, in the sense that the phase of the wavefunction varies rapidly compared tot he amplitude – WKB conditions:



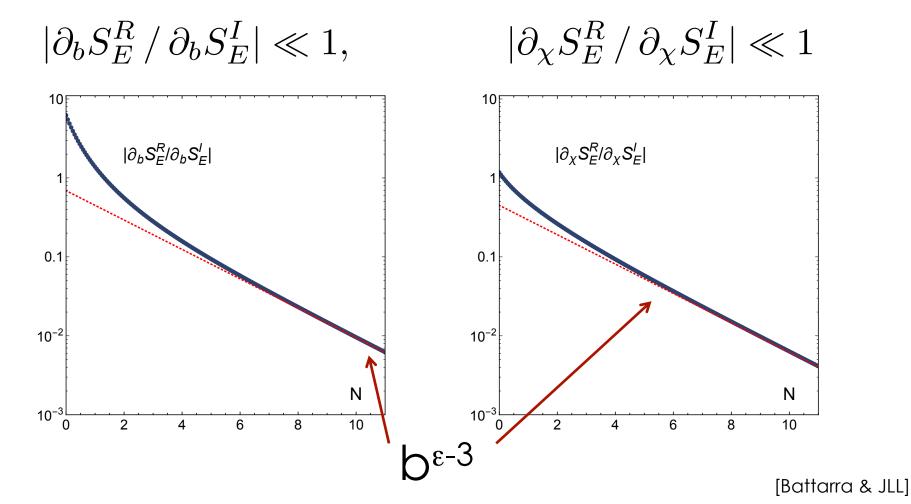
Ekpyrotic Instantons

- How can a contracting universe emerge from nothing?
- Bottom: portion of Euclidean space
- Middle: fully complex
- Top: increasingly classical contracting universe



WKB Classicality - Ekpyrosis

In this case also, the wavefunction becomes increasingly classical in a WKB sense



Implications

- Inflation and ekpyrosis are the only two theories known that can render the universe classical, starting from a quantum state
- In both cases classicality is reached as a power-law in the scale factor of the universe
- In a potential energy landscape the relative probability of the various classical histories is given by a simple formula

$$\Psi^{\star}\Psi \propto e^{\frac{1}{|V(\phi_{SP}^{R})|}}$$

 This implies that ekpyrotic histories are vastly preferred (but an important open question is whether one can add a successful bounce, which also preserves classicality)

Inflation

Reheating Hot big bang
Reheating

Ekpyrotic/Cyclic Universe

Initial conditions	Ekpyrosis	Bounce & reheating	Hot big bang
--------------------	-----------	--------------------	--------------

Summary

Pseudo-Conformal Universe

Initial Conditions	Slow contraction	Bounce & Reheating	Hot big bang		
Galilean Genesis					
Initial Conditions Large Minkowski	Long phase of NEC violating expansion	End of NEC violation Reheating	Hot big bang		
Contracting Matter Phase					
Initial conditions Large flat universe	Matter contraction Large Tensors	Bounce & reheating	Hot big bang		
> Time					

- It is interesting to note that many of the big open issues (bounce, up-fluctuating, up-tunneling, genesis: getting from low-H to high-H) require a better understanding of violations of the null energy condition
- How can these be described in quantum gravity?