Cross correlations with CMB secondaries: constraining cosmological parameters and cluster astrophysics.

Nick Battaglia

Amir Hajian (CITA), David Spergel (Princeton) Dick Bond (CITA), Colin Hill (Columbia) Christoph Pfrommer (HITS), Jon Sievers (Princeton, UKZN), Norm Murray (CITA) Melanie Simet(CMU), Rachel Mandelbaum (CMU), Uros Seljak (Berkeley) Dec. 4 2014

Penn I AS IN Berkeley Berkeley

Planck is a tSZ Machine!

As we heard on Tuesday

Planck is producing exciting SZ results!

Planck Coll. XXIX 2013

It's not just the power spectrum

most other low redshift growth of structure constraints are in mild tension with CMB

CITA-SZ with feedback: Battaglia, Bond, Pfrommer, Sievers & Sijacki 2010, BBPS 2011-12 -13 1,2,3,4,5 for AV14SP3+PSnCk O. Ingent Show the cluster theory and a softed Second 07 goal large treePM-sph sims (~1000³ gas+DM)-NOT 08-12 goal 512³ & 256³ & single-hi-res-cls shock heat only "adiabatic"; cool+SN E; cool + SN E + winds; cool + SN E-feedback + winds + CRs from cluster shocks; but because of core evercooling and overproduction of stars, needed a subgrid model of AGN/starburst feedback in halo cores, calibrated with the (small mass) cluster-BH calculations of Sijacki (with Spaingel, ParonaleR, .f) Feedback is the essence of Gastrophysical Cosmology. Energy/Momentum driven winds, Relativistic injection. full Bljacki-pesoletics was/is ~ infeasible for single massive clusters, and certainly strongly infeasible for big-box statistically useful samples, & also itself is just a subgrid model hence our Mass funce matory subgrid BH/Starburst feedback model AGN feedback + cool + SN E + winds: $\Delta E_{inj} \sim \epsilon \Delta t$ SFR over R_{AGN} in halo centre, episodic above a SFR threshold, $\varepsilon_{eff} < \varepsilon$: most E_{ini} above z=2, so much freedom to minimize ε_{eff} e.g., E_{inj} 58% at z > 2, 23% in 1 < z < 2 19% z<1 Simplified to bistic area of the system of t conclusion circa Feb2013: A universal panacea to cure cluster cores: highly inhomogeneous, episodic & cluster mistory dependent. If observables are overly sensitive, then we become gastrophysical weather reporters and not cosmological gold-sample miners delivering pure cosmic parameters. BUT most relevant ISZ regions of the state of the sent non the mapped long. Sinetic pressure aka turbulence/internal-bulk-flows, pressure/density clumping, asphericity, ... but we need hydrodynamically-reasonable inner cores hence subgrid feedback (beware of cutouts of overcooled cores) "every cluster is a Bullet cluster" - or was a bullet in its past, el Gordo, A520, ...

Gastrophysics? for tSZ P_{th} profile CIB contamination and IR fill in? (Serra's Talk) New physics? Mass function?

Simulated observables Compare to recent observations of other statistical cluster properties

Planck Pth Profile

SPT X-ray P_{th} Profile z > 0.3

- Simulations do well to match the observed pressure profile at higher redshifts also

- We understand (can model) the total thermal energy in massive clusters out to high redshift

Cross Correlation with X-ray clusters

Cross spectra

Cross spectra constraints

RBC weak lensing mass calibration

Discrepancy at $\ell = 3000$?

C(M,z)

ournal of Cosmology and Astroparticle Physics

Detection of thermal SZ-CMB lensing cross-correlation in Planck nominal mission data

J. Colin Hill and David N. Spergel

PHYSICAL REVIEW D 89, 023508 (2014)

Detection of warm and diffuse baryons in large scale structure from the cross correlation of gravitational lensing and the thermal Sunyaev-Zeldovich effect

Ludovic Van Waerbeke,1,* Gary Hinshaw,1,2,† and Norman Murray3,4,‡

Ma+2014 - Interpretation of results

Several sigma detections of the cross correlations (~ 6σ)

Cross correlate with lensing forecast

AdvACT

Funded, large area, multiple frequency bands Potential for cross correlations is huge!

New mocks

Gastrophysics? Not for high mass or low redshift CIB contamination and IR fill in? Not at low redshift New physics? Maybe? Mass function? Probably not...

Cross correlations are the tools for: Constraining 'gastrophysics' Constraining cosmology, maybe