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Neutrino cosmology from Planck 2014 

• Have we detected the Cosmic Neutrino Background 
 through its average density ? 
 through its perturbations/anisotropies ? 
 

• Have we detected something more than the CNB (extra light relics) ? 
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The Cosmic Neutrino Background (CNB) 

Predicted in 1953 with correct temperature (Tν = (4/11)4/3 Tγ) by Alpher, Follin & Herman: 
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61 years later… 
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The Cosmic Neutrino Background (CNB) 

Predicted in 1953 with correct temperature (Tν = (4/11)1/3 Tγ) by Alpher, Follin & Herman: 

61 years later… 
… are we sure that it exists? 
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1. Probing the CNB average density 

Alpher et al.’s prediction with refined neutrino decoupling at ~ 1 MeV, and update to 3 ν�s, leads to : 

ωR = ωγ (1 + Neff x 7/8 (4/11)4/3)    with Neff = 3.046 

in relativistic regime, and contribution to matter density for Tν < mν : 

ωM = ωb + ωCDM + (Σ mν) / 93.14 eV  
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1. Probing the CNB average density 

Alpher et al.’s prediction with refined neutrino decoupling at ~ 1 MeV, and update to 3 ν�s, leads to : 

ωR = ωγ (1 + Neff x 7/8 (4/11)4/3)    with Neff = 3.046 

in relativistic regime, and contribution to matter density for Tν < mν : 

ωM = ωb + ωCDM + (Σ mν) / 93.14 eV  

10 to 17σ evidence, from different combinations of Planck Temp., Pol. and BAOs 

Impact on dArec, θs can be compensated by decreasing H0 

Impact on Late ISW below cosmic variance 
no evidence so far 



• How can we test the density of radiation? 
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1. Probing the CNB average density 



• An increase of radiation only would have obvious consequences: 
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1. Probing the CNB average density 



• An increase of all densities is more subtle to detect: 

 

 

 

 

 

 

• Or in other word, a simultaneous increase of (H0, Neff ), with Ωb, Ωcdm, ΩΛ fixed  
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1. Probing the CNB average density 



• Keeping Ωi fixed and increasing (H0, Neff) preserves all characteristic redshifts 

• But increase in H0 changes peak-scale-to-damping-scale ratio ! 
 

 larger (H0, Neff), more damping  
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1. Probing the CNB average density 



1. Probing the CNB average density 
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    Neff 

H0 

3.046 

(all at 68% CL, BAO from 6dFGS, SDSS-MGS, BOSS-LOWZ, 

BOSS-CMASS-DR11) 
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    Neff 

H0 

(all at 68% CL, BAO from 6dFGS, SDSS-MGS, BOSS-LOWZ, 

BOSS-CMASS-DR11) 

3.046 

Neff  compatible with standard model, > 0 at 10 to 17σ         (was ~ 10 to 12σ with Planck 2013)  



1. Probing the CNB average density 
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Are we sure that observed Neff~3 comes from neutrinos?     Could be anything scaling like radiation:  

standard neutrinos 

other light decoupled relics 
(axions, gravitinos, etc.) scalar field oscillating 

in quartic potential 
background of 

gravitational waves 

neutrinos with exotic interactions 
(self-inter., or with dark sector) other light relics with interactions 

(self-inter., or with dark sector) 
effects from 

modified gravity, 
extra dimensions… 
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Are we sure that observed Neff~3 comes from neutrinos?     Could be anything scaling like radiation:  

standard neutrinos 

other light decoupled relics 
(axions, gravitinos, etc.) scalar field oscillating 

in quartic potential 
background of 

gravitational waves 

neutrinos with exotic interactions 
(self-inter., or with dark sector) other light relics with interactions 

(self-inter., or with dark sector) 
effects from 

modified gravity, 
extra dimensions… 

Standard neutrinos have the strongest theoretical motivations. 
Only species giving a definite prediction of Neff~3. 

But can we get extra observational evidence? 
Maybe at level of perturbations? 



2. Probing the CNB perturbations / anisotropies 
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• Until photon decoupling neutrino perturbations governed by Vlasov equation, like any decoupled (free-

streaming) relativistic relic. 

• Their density/pressure perturbations, energy flux and anisotropic pressure/shear act a sources in Einstein 

equations: gravitational interactions with photons, baryons. 

• Affects the amount of gravitational boost of CMB acoustic oscillations just after Hubble crossing. 

• Controls amplitude and phase of CMB acoustic oscillations. 

• later on (Tν<mν), non-relativistic transition modifies evolution of density perturbations 

Can we observe these free-streaming effects? 

Can we see these additional effects of the masses? 
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• Until photon decoupling neutrino perturbations governed by Vlasov equation, like any decoupled (free-

streaming) relativistic relic. 

• Their density/pressure perturbations, energy flux and anisotropic pressure/shear act a sources in Einstein 

equations: gravitational interactions with photons, baryons. 

• Affects the amount of gravitational boost of CMB acoustic oscillations just after Hubble crossing. 

• Controls amplitude and phase of CMB acoustic oscillations. 

• later on (Tν<mν), non-relativistic transition modifies evolution of density perturbations. 

Can we observe these free-streaming effects? 

Can we see these additional effects of the masses? 



other Dark Radiation 
candidates,  

maybe interacting  
(EFFECTIVE) 

2. Probing the CNB perturbations / anisotropies 
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Define two phenomenological parameters changing the perturbation equations: 

1) Effective sound speed : δp = ceff
2 δρ 

2) Effective viscosity speed cvis
  controlling the amount of anisotropic pressure / shear  

0 1/3 1 
0 

1/3 

1 

ceff
2 

cvis
2 

relativistic free-
streaming relics 

(EXACT) 

relativistic 
perfect fluid 

(EXACT) 

scalar field 
oscillating in 

quartic potential 
(EXACT) 

Archidiacono et al. 2011 
inspired from Hu 1998, 

Trotta & Melchiorri 2004… 



2. Probing the CNB perturbations / anisotropies 
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Effect of varying (ceff
2, cvis

2) on CMB spectrum: 
 
                          Temperature                                                                      Polarisation 

Audren et al., arXiv:1412.xxxx (in preparation) 



2. Probing the CNB perturbations / anisotropies 
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If we could prove that (ceff
2, cvis

2) = (1/3, 1/3): evidence for CNB anisotropies (through the CMB 
ones)  

scalar field oscillating 
in quartic potential 

background of 
gravitational waves 

neutrinos with exotic interactions 
(self-inter., or with dark sector) other light relics with interactions 

(self-inter., or with dark sector) 
effects from 

modified gravity, 
extra dimensions… 

standard neutrinos 

other light decoupled relics 
(axions, gravitinos, etc.) 

If we could prove that (ceff
2, cvis

2) ≠ (1/3, 1/3): very strong result in favor of alternative Dark Radiation 



2. Probing the CNB perturbations / anisotropies 
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68%CL 
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68%CL 



2. Probing the CNB perturbations / anisotropies 
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Standard values within 1.5σ 
With polarisation data, Planck detects signature of neutrinos anisotropies with high significance! 

68%CL 0 excluded at 9σ 



2. Probing the CNB perturbations / anisotropies 
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• Until photon decoupling neutrino perturbations governed by Vlasov equation, like any decoupled (free-

streaming) relativistic relic. 

• Their density/pressure perturbations, energy flux and anisotropic pressure/shear act a sources in Einstein 

equations: gravitational interactions with photons, baryons. 

• Affects the amount of gravitational boost of CMB acoustic oscillations just after Hubble crossing. 

• Controls amplitude and phase of CMB acoustic oscillations. 

• later on (Tν<mν), non-relativistic transition modifies evolution of density perturbations. 

Can we observe these free-streaming effects? 

Can we see these additional effects of the masses? 

 

YES !!! 
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• Until photon decoupling neutrino perturbations governed by Vlasov equation, like any decoupled (free-

streaming) relativistic relic. 

• Their density/pressure perturbations, energy flux and anisotropic pressure/shear act a sources in Einstein 

equations: gravitational interactions with photons, baryons. 

• Affects the amount of gravitational boost of CMB acoustic oscillations just after Hubble crossing. 

• Controls amplitude and phase of CMB acoustic oscillations. 

• later on (Tν<mν), non-relativistic transition modifies evolution of density perturbations. 

Can we observe these free-streaming effects? 

Can we see these additional effects of the masses? 

 

YES !!! 

 

NOT YET 



2. Probing the CNB perturbations / anisotropies 
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late ISW (indirect) 

less lensing (direct) 

Effect of neutrino masses on CMB Temp. for a constant dA(dec) and fixed ``early cosmology’’ (densites at Tν>mν) : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Also effects on lensing spectrum probed by lensing extraction: reduction of power on small scales 

 
 



2. Probing the CNB perturbations / anisotropies 

 
 
• Without lensing extraction: 
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TT+lowP 

+lensing 

+BAO 

strongest bound 



2. Probing the CNB perturbations / anisotropies 

 
 
• With lensing extraction: 
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TT+lowP 

+lensing 

+BAO 

final conservative 
bound 

BAO, JLA, H0 



2. Probing the CNB perturbations / anisotropies 
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Planck 2014 
TT+lowP 
+lensing 
+BAO+JLA+H0 

Planck 2014 
TT,TE,EE 
+lowP 
+BAO 

Planck2013 
+Lya-α P(k) 

 (BOSS 2014) 

… but small tensions with data prefering a low σ8 : SZ clusters, galaxy weak lensing, and RSD… 
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Answer to first question: 

We are confident that we have detected the Cosmic Neutrino Background because we can 
probe with high significance :  
1) its background density: Neff ~ 3 matching old theoretical predictions      (0 excluded at 

17σ) 
2) its perturbations in the relativistic regime: (ceff

2, cvis
2) ~ (1/3, 1/3)     (cvis

2=0 excluded at 9σ) 
 

We don’t see yet its perturbations in the non-relativistic regime, but detection of Σmν expected 
to be just around the corner 

 

Second question: do we see extra light relics? 
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Answer to first question: 

We are confident that we have detected the Cosmic Neutrino Background because we can 
probe with high significance :  
1) its background density: Neff ~ 3 matching old theoretial predictions       (0 excluded at 17σ) 
2) its perturbations in the relativistic regime: (ceff

2, cvis
2) ~ (1/3, 1/3)     (cvis

2=0 excluded at 8σ) 
 

We don’t see yet its perturbations in the non-relativistic regime, but detection of Σmν expected 
to be just around the corner 

 

Second question: do we see extra light relics? 



3. Are there extra light relics? 

04.12.2014 Neutrino Cosmology from (preliminary) Planck 2014 33 

• Lots of well-motivated candidates for extra relativistic relics. What does active neutrino mass bounds 

become in this context? 

• These candidates could be light instead of ultra-relativistic. Contribute to both Neff and Mν. What are 

bounds on their mass? 

• Short baseline oscillation anomaly (LSND, MiniBoone, reactor data…)…  

        Is one light sterile neutrino with m~1eV compatible with Planck? 

 

 

• Model dependent analysis.  To catch most of the cases, either exactly or approximately, study one case 

(one massive extra species) but display results in terms of: 

 Neff : parameter for relativstic density at early times 

 meff : parameter for non –relativistic mass of HDM today (ΩHDM = Σmν / 93.14eV) 
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• Lots of well-motivated candidates for extra relativistic relics. What does active neutrino mass bounds 

become in this context? 

• These candidates could be light instead of ultra-relativistic. Contribute to both Neff and Mν. What are 

bounds on their mass? 

• Short baseline oscillation anomaly (LSND, MiniBoone, reactor data…)…  

        Is one light sterile neutrino with m~1eV compatible with Planck? 

 

 

• Model dependent analysis.  To catch most of the cases, either exactly or approximately, study one case 

(one massive extra species) but display results in terms of: 

 Neff : parameter for relativstic density at early times 

 meff : parameter for non–relativistic mass of HDM today (ωHDM = meff / 93.14eV) 



3. Are there extra light relics? 
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Prior m < 10eV to avoid 
degeneracy with CDM 

Physical masses  
(DW sterile neutrino) 
(early decoupled thermal particle) 

One thermalised sterile 
neutrino species 



3. Are there extra light relics? 
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CFHTLens 

• Several datasets prefer low σ8 (SZ clusters, galaxy weak lensing, …) but are also sensitive to H0 and Ωm.  
• Direct measurements of Hubble rate prefer high H0. 
Assuming massive neutrinos and/or extra radiation brings very marginal reduction of tensions. 



3. Are there extra light relics? 

04.12.2014 Neutrino Cosmology from (preliminary) Planck 2014 37 

No convincing evidence, and stronger bounds than in 2013 
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3. Are there extra light relics? 
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TT+lowP 

TT,TE,EE+lowP+BAO 

Neff = 4 strongly 
disfavored (∆χ2=8) 

Still, with high-H0 prior from LMC and MW cepheids (Efstathiou 2014) :  
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