The LHC and Cosmology

Mathias Garny (CERN)

4.12.2014 Ferrara

Particle Physics and Cosmology

LS 1 from 16th Feb. 2013 to Dec. 2014

The LHC timeline The LHC timeline

Higgs

Higgs couplings t at HL-LHC

	Coupling	Uncertainty (%)					
		300 fb^{-1}		3000 fb ⁻¹			
		Scenario 1	Scenario 2	Scenario 1	Scenario 2		
CMS	K-	6.5	5.1	5.4	1.5		
	KY	5.7	2.7	4.5	1.0		
	κ_a	11	5.7	7.5	2.7		
	κ_b	15	6.9	11	2.7		
	RI	14	8.7	8.0	3.9		
	KT.	8.5	5.1	5.4	2.0		

CMS Projection

Assumption NO invisible/undetectable contribution to Γ_{H} :

- Scenario 1: system./Theory err. unchanged w.r.t. current analysis

- Scenario 2: systematics scaled by 1/sqrt(L), theory errors scaled by $\frac{1}{2}$

γγ loop at 2-5% level

✓ down-type fermion couplings at 2-10% level

✓ direct top coupling at 4-8% level

🔊 gg loop at 3-8% level

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: ICHEP 2014

	Model	e, μ, τ, γ	Jets	E ^{miss} _T	∫£ dt[fb	Mass limit		Reference
Inclusive Searches	MSUGRA/CMSSM MSUGRA/CMSSM MSUGRA/CMSSM 49, 7-49 ⁴ C ² 82, 7-49 ⁴ C ² 82, 7-49 ⁴ C ² 82, 7-49 ⁴ C ² 64, 7-49 ⁴ C ⁴ 64, 7-49 ⁴ C ⁴ 7-49	$\begin{matrix} 0 \\ 1 e, \mu \\ 0 \\ 0 \\ 1 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 1 \cdot 2 \tau + 0 \cdot 1 \ell \\ 2 \gamma \\ 1 e, \mu + \gamma \\ \gamma \\ 2 e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 2-6 jets 0-3 jets - - - - - - - - - - - - -	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.3 20.3 4.7 20.3 20.3 4.8 4.8 5.8 10.5	4.1 1.2 V.1 4.1 1.2 V.1 4.1 1.5 V.1 4.1 1	m(g)=m(g) any m(g) m(g)=0, (m(g)=m(g)=m(g)=m(g)=m(g)=m(g)=m(g)=m(g)	1405.7875 ATLAS-CONF-2013-082 1308.1841 1405.7875 1405.7875 ATLAS-CONF-2013-089 1407.0803 ATLAS-CONF-2013-09 ATLAS-CONF-2013-09 ATLAS-CONF-2012-147 ATLAS-CONF-2012-147 ATLAS-CONF-2012-147
3 rd gen. <u>§</u> med.	$\frac{\tilde{\sigma} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0}}{\tilde{\sigma} \rightarrow t \tilde{\chi}_{1}^{0}}$ $\frac{\tilde{\sigma} \rightarrow t \tilde{\chi}_{1}^{0}}{\tilde{\sigma} \rightarrow b t \tilde{\ell}_{1}^{+}}$	0 0 0-1 e, µ 0-1 e, µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ž 1.25 TeV ž 1.1 TeV ž 1.34 TeV ž 1.34 TeV	m(²⁰)<400 GeV m(²⁰)<350 GeV m(²⁰)<400 GeV m(²⁰)<300 GeV	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{array}{l} b_1 \bar b_1 \cdot b_1 \rightarrow b \bar t_1^0 \\ \bar b_1 \bar b_1 \cdot b_1 \rightarrow b \bar t_1^0 \\ \bar b_1 \bar b_1 \cdot b_1 \rightarrow b \bar t_1^0 \\ \bar i_1 \bar i_1 (light), \bar i_1 \rightarrow b \bar b \bar t_1^0 \\ \bar i_1 \bar i_1 (light), \bar i_1 \rightarrow b \bar b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1^0 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \\ \bar i_1 (medlum), \bar i_1 \rightarrow b \bar t_1 \end{pmatrix} $	$\begin{array}{c} 0 \\ 2 e, \mu (SS) \\ 1 \cdot 2 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 0 \\ 1 e, \mu \\ 0 \\ 1 e, \mu \\ 0 \\ 3 e, \mu (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b 1 ono-jet(-t 1 b 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.3 4.7 20.3 20.3 20.1 20 20.1 20.3 20.3 20.3 20.3	5. 104-50 GeV 110580-001 / 275-426 GeV 1. 105210 GeV 1. 105210 GeV 1159-60 GeV 1159-60 GeV 1159-60 GeV 105-60 GeV 105-60 GeV 105-60 GeV	m(?)-30 GeV m(?)-22 m(?) m(?)-55 GeV m(?)-m(V)-60(W)-50 GeV, m(?,)<-m(?) m(?)-1 GeV m(?)-5 GeV m(?)-5 GeV m(?)-5 GeV m(?)-5 GeV m(?)-55 GeV m(?)-55 GeV	1308.2631 1404.2500 1208.8405,1209.2102 1403.4853 1308.2631 1407.0583 1407.0583 1406.1122 1407.0608 1403.5222
EV/ direct	$ \begin{array}{c} l_{1,R} t_{1,R}, l \rightarrow l \tilde{k}_1^0 \\ \tilde{k}_1^* \tilde{k}_1, \tilde{k}_1^+ \rightarrow l \nu(l \tilde{v}) \\ \tilde{k}_1^* \tilde{k}_1, \tilde{k}_1^+ \rightarrow l \nu(l \tilde{v}), l \tilde{v}_L^* l \tilde{k}_1 \\ \tilde{k}_1^* \tilde{k}_2^+ \rightarrow \tilde{k}_1 \nu l_L (l (\tilde{v}), l \tilde{v}_L^* l (\tilde{v})) \\ \tilde{k}_1^* \tilde{k}_2^+ \rightarrow W \tilde{k}_1^* L \tilde{k}_1^0 \\ \tilde{k}_2^+ \tilde{k}_2^+ \rightarrow W \tilde{k}_1^* L \tilde{k}_1^0 \\ \tilde{k}_2^+ \tilde{k}_2^+ \gamma \tilde{k}_{2,2}^- \rightarrow \tilde{k}_R \ell \end{array} $	2 e, µ 2 e, µ 2 τ 3 e, µ 2 · 3 e, µ 1 e, µ 4 e, µ	0 0 0 2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	2 99-325 GeV 1 100-350 GeV 2 10	$\begin{array}{l} m(\tilde{r}_{1}^{0})\!=\!0 \; \text{GeV} \\ m(\tilde{r}_{1}^{0})\!=\!0 \; \text{GeV} \; m(\tilde{r},\tilde{r}_{1}\!=\!0.5(m(\tilde{r}_{1}^{0})\!+\!m(\tilde{r}_{1}^{0}))) \\ m(\tilde{r}_{1}^{0})\!=\!0 \; \text{GeV} \; m(\tilde{r},\tilde{r})\!=\!0.5(m(\tilde{r}_{1}^{0})\!+\!m(\tilde{r}_{1}^{0})) \\ m(\tilde{r}_{1}^{0})\!=\!m(\tilde{r}_{2}^{0})\!=\!0.5(m(\tilde{r}_{1}^{0})\!+\!m(\tilde{r}_{1}^{0})) \\ m(\tilde{r}_{1}^{0})\!=\!m(\tilde{r}_{2}^{0})\!=\!0. \; \text{deposes decoupled} \\ m(\tilde{r}_{1}^{0})\!=\!m(\tilde{r}_{2}^{0})\!=\!0.\; \text{stepsons decoupled} \\ m(\tilde{r}_{1}^{0})\!=\!m(\tilde{r}_{2}^{0})\!=\!0.\; \text{stepsons decoupled} \\ m(\tilde{r}_{1}^{0})\!=\!0.\; m(\tilde{r}_{2}^{0})\!=\!0.\; \text{stepsons decoupled} \\ m(\tilde{r}_{1}^{0})\!=\!0.\; m(\tilde{r}_{2}^{0})\!=\!0.\; \text{stepsons decoupled} \\ m(\tilde{r}_{1}^{0})\!=\!m(\tilde{r}_{2}^{0})\!=\!0.\; \text{m}(\tilde{r}_{2}^{0})\!=\!m(\tilde{r}_{1}^{0}) \\ m(\tilde{r}_{1}^{0})\!=\!0.\; m(\tilde{r}_{2}^{0})\!=\!0.\; \text{stepsons decoupled} \\ m(\tilde{r}_{1}^{0})\!=\!m(\tilde{r}_{1}^{0})\!=\!0.\; m(\tilde{r}_{2}^{0})\!=\!m(\tilde{r}_{1}^{0}) \\ m(\tilde{r}_{1}^{0})\!=\!m(\tilde{r}_{1}^{0})\!=\!0.\; m(\tilde{r}_{1}^{0})\!=\!m(\tilde{r}_{1}^{0}) \\ m(\tilde{r}_{1}^{0})\!=\!m(\tilde{r}_{1}^{0})\!=\!0.\; m(\tilde{r}_{1}^{0})\!=\!m(\tilde{r}_{1}^{0}) \\ m(\tilde{r}_{1}^{0}) \\ m(\tilde{r}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294,1402.7029 ATLAS-CONF-2013.093 1405.5086
Long-lived particles	$\begin{array}{l} \text{Direct} \tilde{\mathcal{K}}_{1}^{+} \tilde{\mathcal{K}}_{1}^{-} \text{prod.}, \log - \text{lived} \tilde{\mathcal{K}}_{1}^{+} \\ \text{Stable, stopped } \tilde{g} \text{ R-hadron} \\ \text{GMSB, stable } \tilde{r}, \tilde{\mathcal{K}}_{1}^{0} {\rightarrow} \tilde{r}(\tilde{c}, \tilde{\mu}) {+} \tilde{r}(c, \tilde{\mu}) {+} \tilde{r}(c, \tilde{\mu}) {+} \tilde{r}(\tilde{c}, \tilde{\mu}) {+} \tilde{r}(\tilde{c},$	Disapp. trk 0 ,µ) 1-2 µ 2 γ 1 µ, displ. vtx	1 jet 1-5 jets	Yes Yes Yes	20.3 27.9 15.9 4.7 20.3	X ¹ 270 GeV 832 GeV 2 832 GeV 832 GeV X ¹ / ₄ 230 GeV 1.0 TeV	$\begin{split} m(\tilde{t}_1^2) = & m(\tilde{t}_2^2) = & 160 \ \text{MeV}, \ \tau(\tilde{t}_1^2) = & 0.2 \ \text{ns} \\ m(\tilde{t}_1^2) = & 100 \ \text{GeV}, \ 10 \ \mu\text{s} < \tau(\tilde{g}) < & 1000 \ \text{s} \\ & 10 \ \text{stan} < & 50 \ \text{ct} \\ & 0.4 < \tau(\tilde{t}_1^2) < & 2 \ \text{ns} \\ & 1.5 \ < & \tau < & 156 \ \text{mm}, \ \text{BR}(\mu) = & 1, \ m(\tilde{t}_1^0) = & 108 \ \text{GeV} \end{split}$	ATLAS-CONF-2013-069 1310.6584 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$\begin{array}{l} LFV pp {\rightarrow} \tilde{v}_{\tau} + X, \tilde{v}_{\tau} {\rightarrow} e + \mu \\ LFV pp {\rightarrow} \tilde{v}_{\tau} + X, \tilde{v}_{\tau} {\rightarrow} e(\mu) + \tau \\ Bilinear RPV CMSSM \\ \tilde{k}_{1}^{+} \tilde{k}_{1}^{-}, \tilde{k}_{1}^{+} {\rightarrow} W \tilde{k}_{1}^{0}, \tilde{k}_{1}^{0} {\rightarrow} e \tilde{v}_{\mu}, e \mu \tilde{v}_{e} \\ \tilde{k}_{1}^{+} \tilde{k}_{1}^{-}, \tilde{k}_{1}^{+} {\rightarrow} W \tilde{k}_{1}^{0}, \tilde{k}_{1}^{0} {\rightarrow} \tau \tau \tilde{v}_{e}, e \tau \tilde{v}_{\tau} \\ \tilde{\delta}^{-} \frac{e q \rho q}{\delta {\rightarrow} \tilde{t}_{1} t, \tilde{t}_{1} {\rightarrow} b s} \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu (SS) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu (SS) \end{array}$	0-3 b 6-7 jets 0-3 b	· Yes Yes Yes Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	5. 5.5 TeV 5. 1.1.TeV 4.2 750.GeV 5. 750.GeV 6. 916 GeV 8. 916 GeV 8. 916 GeV	$\begin{split} & k_{111}^{i}=0.10, \lambda_{12}=0.06 \\ & \lambda_{121}^{i}=0.10, \lambda_{123}=0.06 \\ & m(q)=m(q), c_{122}=<1mn \\ & m(q_{1}^{21})=0.2 xm(q_{1}^{21}), \lambda_{221}=0 \\ & m(q_{1}^{21})=0.2 xm(q_{1}^{21}), \lambda_{221}=0 \\ & m(q_{1}^{21})=0.2 xm(q_{1}^{21}), \lambda_{221}=0 \\ & BR(q)=BR(q)=BR(q)=0.6 \end{split}$	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 e, µ (SS) 0	4 jets 2 b mono-jet	Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 350-800 GeV M* scale 704 GeV	incl. limit from 1110.2693 $m(\chi){<}80{\rm GeV}, limit of {<}887{\rm GeV} {\rm for} {\rm D8}$	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$ full data	$\sqrt{s} = 8$ TeV partial data	$\sqrt{s} = full$	8 TeV data		10-1 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

ATLAS Preliminary $\sqrt{s} = 7, 8 \text{ TeV}$

N. Craig

ATLAS 1405.7875

ATLAS 1405.7875

N. Craig

ATLAS 1405.7875

N. Craig

SM extrapolation

2-loop EW threshold, 3-loop running Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia 1307.3536

SM vacuum instability

Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia 1307.3536

SM vacuum instability

Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia 1307.3536

SM vacuum instability and inflation

- EW vacuum meta-stable (for best-fit m_t, m_h)
- Higgs could end up in unstable region in some Hubble patches if

$$H_{inf}\gtrsim V_{max}^{1/4}\sim 10^9~{
m GeV}$$

 Observation of (prim.) r would imply some kind of beyond-SM (unless top mass 2 – 3σ below best fit)

SM vacuum instability and inflation

- EW vacuum meta-stable (for best-fit m_t, m_h)
- Higgs could end up in unstable region in some Hubble patches if

$$H_{inf}\gtrsim V_{max}^{1/4}\sim 10^9~{
m GeV}$$

- Observation of (prim.) r would imply some kind of beyond-SM (unless top mass 2 – 3σ below best fit)
- Ways around: small non-minimal coupling, ...

Herranen, Murkkanen, Nurmi, Rajantie 1407.3141

Baryogenesis and the LHC

Baryon asymmetry

Consistent value BBN (T \sim keV) and CMB (T \sim eV)

$$\eta = \frac{n_b - n_{\bar{b}}}{n_{\gamma}} = \begin{cases} (6.15 \pm 0.15) \cdot 10^{-10} & \text{WMAP9} \\ (6.04 \pm 0.08) \cdot 10^{-10} & \text{Planck} \end{cases}$$

WMAP9 1212.5226, Planck 1303.5076

Baryogenesis ($\simeq 10^9 + 1: 10^9$ particles vs antiparticles)

CP violation, B violation, deviation from equilibrium

Electroweak baryogenesis

- The baryon asymmetry could be generated during a first order phase transition
- Electroweak phase transition in the SM is a crossover for $m_H\gtrsim 70 {\rm GeV}$

from T. Konstandin

EW baryogenesis

MSSM: need very light RH stops, practically excluded

Direct stop search $pp
ightarrow { ilde t} { ilde t}$

EW baryogenesis

MSSM: need very light RH stops, practically excluded

EW baryogenesis

MSSM: need very light RH stops, practically excluded

- SM+singlet, 2HDM, dim6 Curtin, Meade, Yu 1409.0005; Craig et al 1412.0258;...
- ⇒ Precision Higgs coupling, invisible decay, triple-Higgs measurements crucial (sometimes challenging, HL-LHC)

Baryogenesis and neutrinos

Vanilla leptogenesis vs neutrino mass

Di Bari 1206.3168 (unflavoured)

Vanilla leptogenesis vs neutrino mass

BOSS 1403.4599

Di Bari 1206.3168 (unflavoured)

 \Rightarrow absolute neutrino mass scale is very important ingredient

Dark Matter and the LHC

Collider exp. +? Dark Matter

Dark Matter

THE ASTROPHYSICAL JOURNAL

AN INTERNATIONAL REVIEW OF SPECTROSCOPY AND ASTRONOMICAL PHYSICS

VOLUME 86

OCTOBER 1937

NUMBER 3

ON THE MASSES OF NEBULAE AND OF CLUSTERS OF NEBULAE

F. ZWICKY

$$\Omega_{\chi} h^2 = 0.1199 \pm 0.0027$$

Planck XVI 1303.5076

Many dark matter candidates proposed, with very different characteristics...

The production mechanism of dark matter particles is very model dependent

A. Ibarra; Kolb/Turner

'The decade of the WIMP'

$$\Omega_\chi h^2 = 0.1199 \pm 0.0027 \simeq 0.1\, {
m pb} \cdot c \,/\langle \sigma
u
angle$$

Planck XVI 1303.5076

NB: other well-motivated possibilities: axions, ...

'The decade of the WIMP'

$$\Omega_{\chi} h^2 = 0.1199 \pm 0.0027 \simeq 0.1 \, {
m pb} \cdot c \, / \langle \sigma v
angle$$

Planck XVI 1303.5076

Fermi, H.E.S.S., AMS02, Planck..., CTA, GAMMA-400

e.g. 1305.5597 1310.0828, 1410.2242; 1301.1173

e.g. CMS 1402.4770, ATLAS 1405.7875

NB: other well-motivated possibilities: axions, ...

WIMPology

- Many experiments at edge of sensitivity for WIMPy cross sections
- ► Large uncertainties: need input from simulations, halo profile, substructures, velocity distribution, ...; foregrounds, cosmic ray propagation, ... ⇒ Collider/CMB bounds highly desirable

WIMPology

- Many experiments at edge of sensitivity for WIMPy cross sections
- ► Large uncertainties: need input from simulations, halo profile, substructures, velocity distribution, ...; foregrounds, cosmic ray propagation, ... ⇒ Collider/CMB bounds highly desirable

Galactic center excess?

Calore, Cholis, Weniger 1409.0042

Calore, Cholis, McCabe, Weniger 1411.4647; ...

WIMPology

- Many experiments at edge of sensitivity for WIMPy cross sections
- ► Large uncertainties: need input from simulations, halo profile, substructures, velocity distribution, ...; foregrounds, cosmic ray propagation, ... ⇒ Collider/CMB bounds highly desirable

Calore, Cholis, Weniger 1409.0042

Calore, Cholis, McCabe, Weniger 1411.4647;

B. Andersson, Fermi LAT dwarf Pass 8

Interplay of ID, DD, LHC

- Combination of different probes is crucial to confirm/identify/'rule out' WIMPs
- How to compare different probes?
- Most complete: full models (MSSM)
 - Motivated from particle physics
 - Many free parameters

Interplay of ID, DD, LHC

- Combination of different probes is crucial to confirm/identify/'rule out' WIMPs
- How to compare different probes?
- Most complete: full models (MSSM)
 - Motivated from particle physics
 - Many free parameters
- Most model-independent: effective operator description
 - Straightforward and systematic
 - Limited reach of validity @ LHC energies

DM and the LHC

CMS 1408.3583

cf. also Goodman, Ibe, Rajamaran, Sheperd, Tait, Yu 10; Bai, Fox, Harnik 10

DM and the LHC

cf. also Goodman, Ibe, Rajamaran, Sheperd, Tait, Yu 10; Bai, Fox, Harnik 10

DM and the LHC

CMS 1408.3583

Validity of contact int. limit?

Momentum transfer \sim TeV, limit on suppression scale $\Lambda \sim TeV$

e.g. Busoni, De Simone, Morgante, Riotto 1402.1275; ...

cf. also Goodman, Ibe, Rajamaran, Sheperd, Tait, Yu 10; Bai, Fox, Harnik 10

Interplay of ID, DD, LHC

Bottom-up approach: DM + mediator

When is the mediator important?

• Collider searches (direct production of mediator for $m_\eta \lesssim 2-3$ TeV)

When is the mediator important?

• Collider searches (direct production of mediator for $m_\eta \lesssim 2-3$ TeV)

• Indirect detection (internal bremsstrahlung for $m_\eta \lesssim 5 m_\chi$, Majorana)

Bergstrom 89; Bergstrom, Bringmann, Edsjo 0710.3169

When is the mediator important?

• Collider searches (direct production of mediator for $m_\eta \lesssim 2-3$ TeV)

• Indirect detection (internal bremsstrahlung for $m_\eta \lesssim 5m_\chi$, Majorana)

Bergstrom 89; Bergstrom, Bringmann, Edsjo 0710.3169

• Direct detection (EFT OK, except resonance for $m_{\eta} \simeq m_{\chi}$)

Hisano, Ishiwata, Nagata 1110.3719; Gondolo, Scopel 1307.4481; Drees, Nojiri; ...

Complementarity (for thermal production)

DM coupling to u-quark

MG, Ibarra, Rydbeck, Vogl 1403.4634

Complementarity (for thermal production)

DM coupling to u-quark

MG, Ibarra, Rydbeck, Vogl 1403.4634

Complementarity (for thermal production)

DM coupling to u-quark (prospects)

MG, Ibarra, Rydbeck, Vogl 1403.4634

DM coupling to leptons

MG, Ibarra, Pato, Vogl 1306.6342

Conclusion

- Most profound observational hints for physics beyond SM come from cosmology; way ahead of theory/laboratory
- Next LHC run(s) will have important consequences for many scenarios of WIMP dark matter, EW baryogenesis, ...
- Complementarity/combination with ID & DD will be crucial to identify/rule out WIMPs
- Also many other interesting connections: neutrino mass, models/scale of inflation, DM self-interactions, topological defects reheating vs heavy ion (QFT in extreme environments), ...

Conclusion

- Most profound observational hints for physics beyond SM come from cosmology; way ahead of theory/laboratory
- Next LHC run(s) will have important consequences for many scenarios of WIMP dark matter, EW baryogenesis, ...
- Complementarity/combination with ID & DD will be crucial to identify/rule out WIMPs
- Also many other interesting connections: neutrino mass, models/scale of inflation, DM self-interactions, topological defects reheating vs heavy ion (QFT in extreme environments), ...

thank you!

image from T. Kamon

Massive neutrinos and leptogenesis

$$\begin{array}{lll} m_{\nu_1}^2 - m_{\nu_2}^2 &=& 7.02...8.09 \cdot 10^{-5} \mathrm{eV}^2 & (3\sigma \text{ range}) \\ |m_{\nu_1}^2 - m_{\nu_3}^2| &=& 2.31...2.60 \cdot 10^{-3} \mathrm{eV}^2 \end{array}$$

Add right-handed neutrinos to SM, seesaw explains why m_{ν} is so small

$$m_{\nu} = -v_{EW}^2 y \hat{M}_{\nu_R}^{-1} y^T$$

Massive neutrinos and leptogenesis

$$\begin{array}{lll} m_{\nu_1}^2 - m_{\nu_2}^2 &=& 7.02...8.09 \cdot 10^{-5} \mathrm{eV}^2 & (3\sigma \text{ range}) \\ |m_{\nu_1}^2 - m_{\nu_3}^2| &=& 2.31...2.60 \cdot 10^{-3} \mathrm{eV}^2 \end{array}$$

Add right-handed neutrinos to SM, seesaw explains why m_{ν} is so small

$$m_{\nu} = -v_{EW}^2 y \hat{M}_{\nu_R}^{-1} y^T$$

... and baryon asymmetry

Fukugita, Yanagida 86

- B-L-violating Majorana masses M_{ν_R}
- CP-violation via Yukawa couplings y (like for quarks)
- Out-of-equilibrium (inverse) decay $\nu_R \leftrightarrow \ell \phi^{\dagger}$ and $\nu_R \leftrightarrow \ell^c \phi$

$$\begin{split} (\Gamma_i/H)|_{\mathcal{T}=M_i} &\simeq \quad \frac{\tilde{m}_{\nu,i}/8\pi}{1.66g_*v_{EW}^2/M_{pl}} \simeq \tilde{m}_{\nu,i}/\text{meV} \\ &\sim \quad \mathcal{O}(1-100) \iff \frac{\text{leptogenesis works well}}{\text{for observed }\nu \text{ mass scale}} \end{split}$$

Direct production of the mediator $gg, qq \rightarrow \eta\eta, \eta \rightarrow \chi q$

DM-SM-med. coupling strength

mass splitting

MG, Ibarra, Rydbeck, Vogl 1403.4634; cf. also Papucci, Vichi, Zurek 1402.2285 for Dirac DM Reinterpretation of ATLAS search for jets + missing energy $\mathcal{L} = 20.3 \text{ fb}^{-1}$ (signal regions with 2-4jets; matching for two ad. jets) ATLAS 1405.7875; ATLAS-CONF-2013-047