
Juan García-Bellido IFT-UAM/CSIC

;

Planck Conference P. Costabili, Ferrara 4th December 2014

- The Higgs was discovered at CERN in 2012
- It is the only fundamental scalar known
- = Relativistic ether gives mass to particles
- Its mass hints at a fundamental symmetry
- RGE equations leads to massless @ GUT
- Non-minimal coupling of Higgs to gravity
- Higgs drives inflation at GUT scale
- Breaking of scale invariance: the dilaton
- Higgs-Dilaton Inflation: predictions (n_s,w)
- Future surveys LSS and CMB experiments

Giardino, Kannike, Masina, Raidal, Strumia (2014)

 $M_h = 125.15 \text{ GeV}$

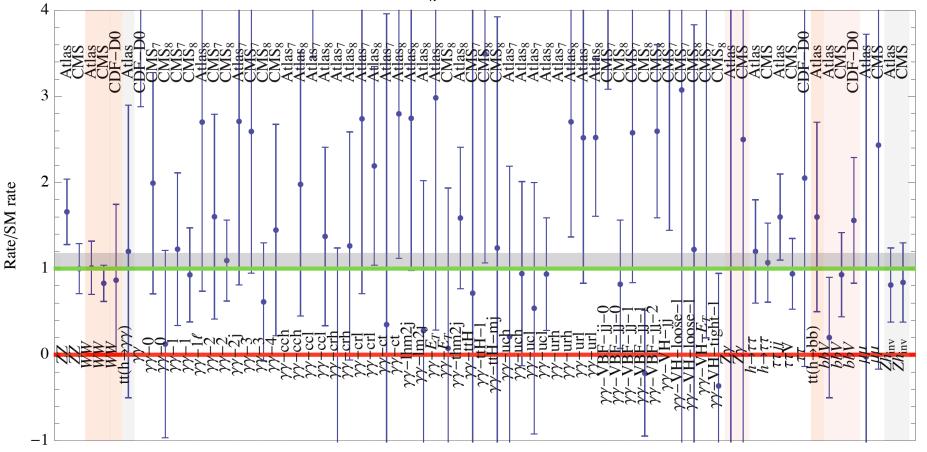
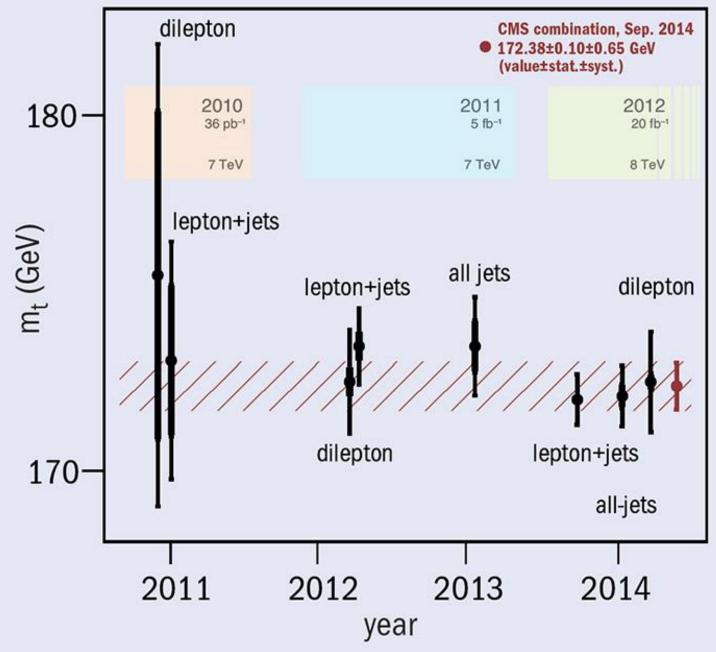
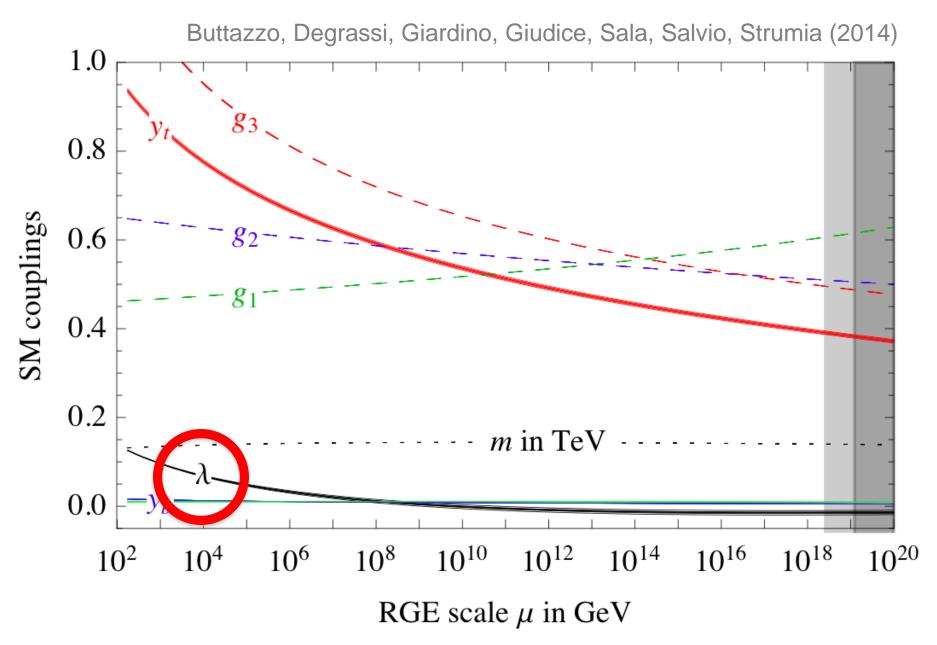



Figure 1: Measured Higgs boson rates at ATLAS, CMS, CDF, D0 and their average (horizontal gray band at $\pm 1\sigma$). Here 0 (red line) corresponds to no Higgs boson, 1 (green line) to the SM Higgs boson (including the latest data point, which describes the invisible Higgs rate).

ATLAS Exotics Searcher 95% CL Exclusion ATLAS Prelimina								
Status: ICHEP 2014					(a) a) al	SIM CARICA	20.3) fb ⁻¹	\sqrt{s} = 7, 8 TeV
	Model	l, y	JUCIS	Tiss L				Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell$ ADD OBH $\rightarrow \ell q$ ADD OBH ADD BH high N_{trk} ADD BH high $\sum p_T$ RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow WW \rightarrow \ell\nu\ell\nu$ Bulk RS $G_{KK} \rightarrow ZZ \rightarrow \ell\ell qq$ Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ Bulk RS $g_{KK} \rightarrow t\bar{t}$ S^1/Z_2 ED	2 e, µ	1-2 j - 1 j 2 j - 2 j j - 2 j / 1 J 4 b ≥ 1 b, ≥ 1 J/2j	- 20 - 20 - 20 - 20 Yes 20 - 20 Yes 20 - 11 Yes 14	4.7 M _D 0.3 M ₅ 0.3 M _{th} 0.3 G _{KK} mass 0.3 G _{KK} mass 9.5 G _{KK} mass 4.3 8 _{KK} mass 5.0 M _{KK} \approx R ⁻¹	4.37 TeV 4.37 TeV 5.2 TeV 5.2 TeV 5.2 TeV 5.82 TeV 5.7 TeV 6.2 TeV 1.23 TeV 2.68 TeV 2.68 TeV 4.71 TeV	n = 2 n = 3 HLZ n = 6 $n = 6$, $M_D = 1.5$ TeV, non-rot BH $n = 6$, $M_D = 1.5$ TeV, non-rot BH $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 1.0$ BR = 0.925	1210.4491 ATLAS-CONF-2014-030 1311.2006 to be submitted to PRD 1308.4075 1405.4254 1405.4254 1405.4123 1208.2880 ATLAS-CONF-2014-039 ATLAS-CONF-2014-005 ATLAS-CONF-2013-052 1209.2535
Gauge bosons	$\begin{array}{c} \text{UED} \\ \\ & \text{SSM } Z' \to \ell\ell \\ & \text{SSM } Z' \to \tau\tau \\ & \text{SSM } W' \to \ell\nu \\ & \text{EGM } W' \to WZ \to \ell\nu \ \ell'\ell' \\ & \text{EGM } W' \to WZ \to qq\ell\ell \\ & \text{LRSM } W'_R \to t\bar{b} \\ & \text{LRSM } W'_R \to t\bar{b} \end{array}$	$2 \gamma \\ 2 e, \mu \\ 2 \tau \\ 1 e, \mu \\ 3 e, \mu \\ 2 e, \mu \\ 1 e, \mu \\ 0 e, \mu$	- - 2 j / 1 J 2 b, 0-1 j ≥ 1 b, 1 J	- 20 - 19 Yes 20 Yes 20 - 20 Yes 14	4.8 Compact. scale R ⁻¹ 0.3 Z' mass 9.5 Z' mass 0.3 W' mass	1.41 TeV 2.9 TeV 1.9 TeV 3.28 TeV 1.52 TeV 1.59 TeV 1.84 TeV 1.77 TeV		ATLAS-CONF-2012-072 1405.4123 ATLAS-CONF-2013-066 ATLAS-CONF-2014-017 1406.4456 ATLAS-CONF-2014-039 ATLAS-CONF-2013-050 to be submitted to EPJC
CI	Cl qqqq Cl qqℓℓ Cl uutt	_ 2 e,μ 2 e,μ (SS)	$\begin{array}{c} 2 \ j \\ - \\ \geq 1 \ b, \geq 1 \ j \end{array}$	- 20	4.8 Λ 0.3 Λ 4.3 Λ	7.6 TeV 3.3 TeV	$\eta = +1$ 21.6 TeV $\eta_{LL} = -1$ C = 1	1210.1718 ATLAS-CONF-2014-030 ATLAS-CONF-2013-051
DM	EFT D5 operator (Dirac) EFT D9 operator (Dirac)	0 e,μ 0 e,μ	1-2 j 1 J, ≤ 1 j		0.5 M. 0.3 M.	731 GeV 2.4 TeV	at 90% CL for $m(\chi) < 80$ GeV at 90% CL for $m(\chi) < 100$ GeV	ATLAS-CONF-2012-147 1309.4017
ГQ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ, 1 τ	≥ 2 j ≥ 2 j 1 b, 1 j	- '	1.0LQ mass1.0LQ mass4.7LQ mass	660 GeV 685 GeV 534 GeV	$egin{array}{lll} eta = 1 \ eta = 1 \ eta = 1 \ eta = 1 \ eta = 1 \end{array}$	1112.4828 1203.3172 1303.0526
Heavy quarks	Vector-like quark $TT \rightarrow Ht + X$ Vector-like quark $TT \rightarrow Wb + X$ Vector-like quark $TT \rightarrow Zt + X$ Vector-like quark $BB \rightarrow Zb + X$ Vector-like quark $BB \rightarrow Wt + X$	1 e,μ 2/≥3 e,μ 2/≥3 e,μ	$\begin{array}{l} \geq 2 \ b, \geq 4 \ j \\ \geq 1 \ b, \geq 3 \ j \\ \geq 2/ \geq 1 \ b \\ \geq 2/ \geq 1 \ b \\ \geq 2/ \geq 1 \ b \\ \geq 1 \ b, \geq 1 \ j \end{array}$	Yes 14 - 20 - 20	4.3T mass4.3T mass0.3T mass0.3B mass4.3B mass	790 GeV 670 GeV 735 GeV 755 GeV 720 GeV	T in (T,B) doublet isospin singlet T in (T,B) doublet B in (B,Y) doublet B in (T,B) doublet	ATLAS-CONF-2013-018 ATLAS-CONF-2013-060 ATLAS-CONF-2014-036 ATLAS-CONF-2014-036 ATLAS-CONF-2013-051
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$	1 γ - 1 or 2 e, μ 2 e, μ, 1 γ	1 j 2 j 1 b, 2 j or 1 j –	- 20 Yes 4	0.3 q* mass 0.3 q* mass 4.7 b* mass 3.0 ℓ* mass	3.5 TeV 4.09 TeV 870 GeV 2.2 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ left-handed coupling $\Lambda = 2.2$ TeV	1309.3230 to be submitted to PRD 1301.1583 1308.1364
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Type III Seesaw Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Multi-charged particles Magnetic monopoles	1 e, μ, 1 γ 2 e, μ 2 e, μ 2 e, μ (SS) - -	- 2 j - - -	- : - ! 	 H^{±±} mass multi-charged particle monopole mass 	960 GeV 1.5 TeV 245 GeV 409 GeV mass 490 GeV 862 GeV	$\begin{split} m(W_R) &= 2 \text{ TeV, no mixing} \\ V_e =0.055, V_{\mu} =0.063, V_{\tau} =0 \\ \text{DY production, BR}(H^{\pm\pm} \rightarrow \ell\ell)=1 \\ \text{DY production, } q &= 4e \\ \text{DY production, } g &= 1g_D \end{split}$	to be submitted to PLB 1203.5420 ATLAS-CONF-2013-019 1210.5070 1301.5272 1207.6411
$\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ 10^{-1} 1 10 Mass scale [TeV]								

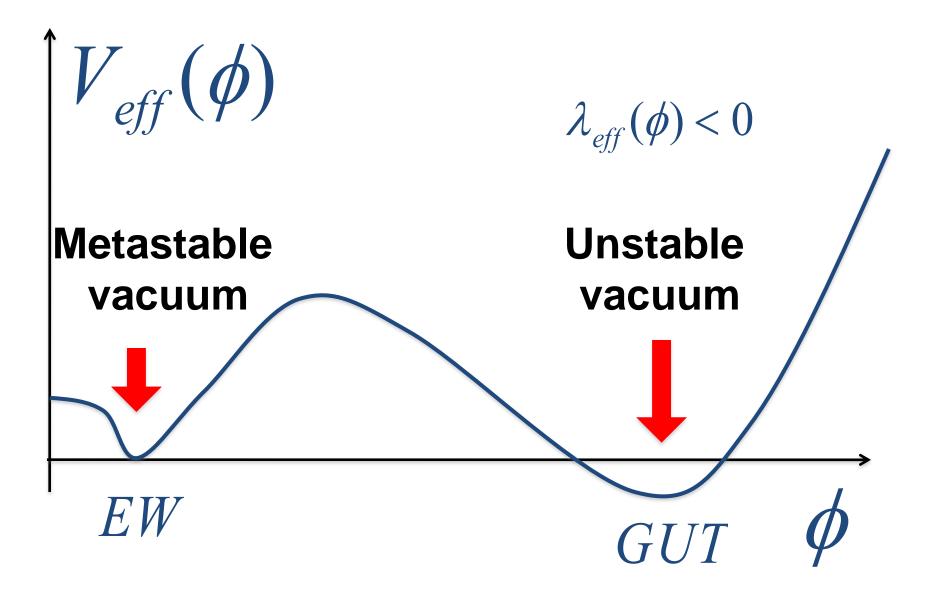
*Only a selection of the available mass limits on new states or phenomena is shown.

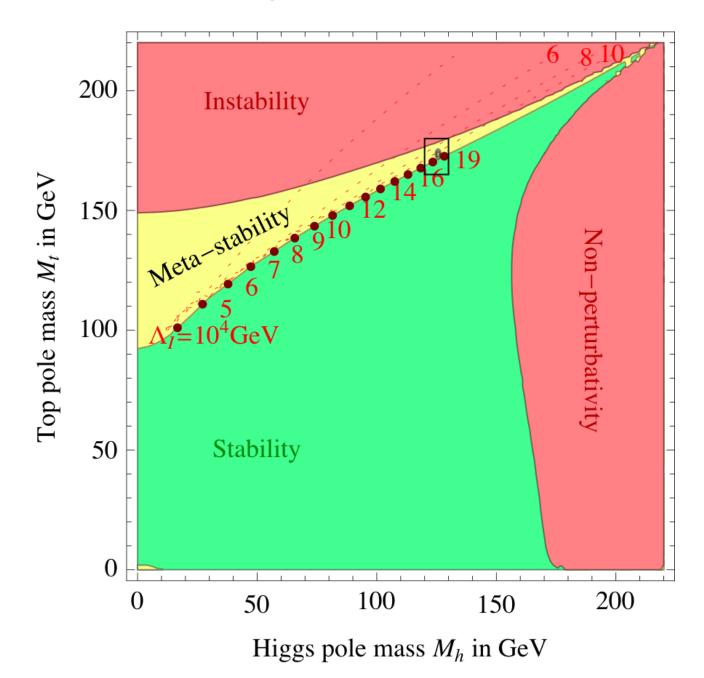


Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia (2014)

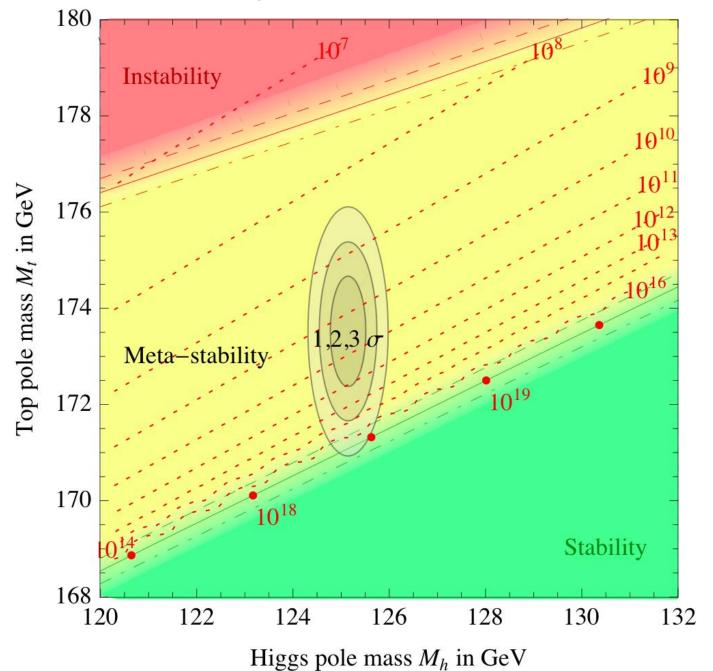
 $\begin{array}{rcl} M_W &=& 80.384 \pm 0.014 \; {\rm GeV} & {\rm Pole \; mass \; of \; the \; W \; boson} \\ M_Z &=& 91.1876 \pm 0.0021 \; {\rm GeV} & {\rm Pole \; mass \; of \; the \; Z \; boson} \\ M_h &=& 125.15 \pm 0.24 \; {\rm GeV} & {\rm Pole \; mass \; of \; the \; higgs} \\ M_t &=& 173.34 \pm 0.76 \pm 0.3 \; {\rm GeV} & {\rm Pole \; mass \; of \; the \; top \; quark} \\ (\sqrt{2}G_{\mu})^{-1/2} &=& 246.21971 \pm 0.00006 \; {\rm GeV} & {\rm Fermi \; constant \; for \; \mu \; decay} \\ \alpha_3(M_Z) &=& 0.1184 \pm 0.0007 & {\rm \overline{MS} \; gauge \; SU(3)_c \; coupling \; (M_Z) \; M_Z \;$

Non-minimal coupling of Higgs to gravity $S_J = \int d^4x \sqrt{-g} \left[-\frac{M_{\rm Pl}^2}{2} \left(1 + \frac{2\xi H^{\dagger} H}{M_{\rm Pl}^2} \right) \mathcal{R} + (\partial_{\mu} H)^{\dagger} (\partial^{\mu} H) - V \right]$

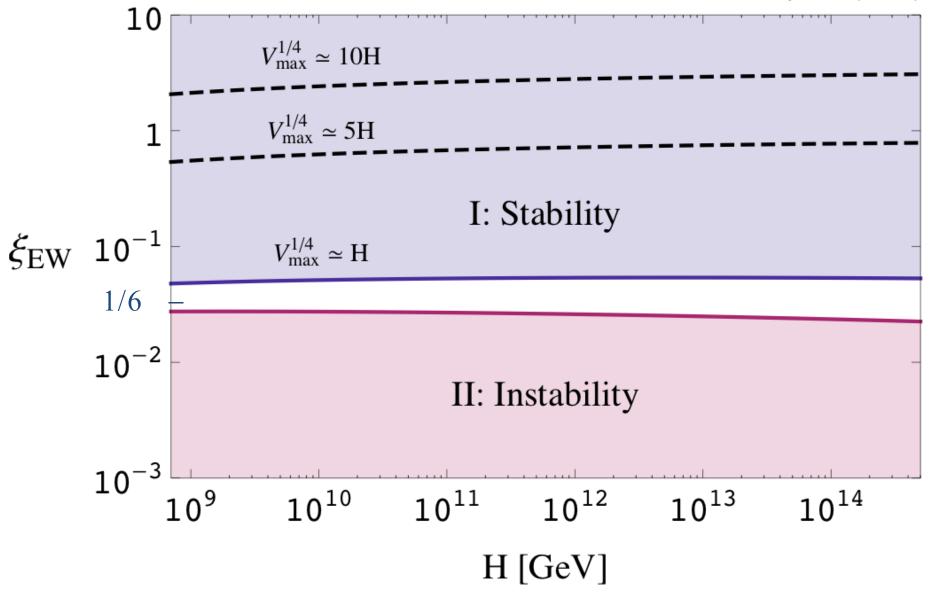




 $V_{eff}(\phi)$ $\lambda_{eff}(\phi) > 0$ **Stable** vacuum H GUT



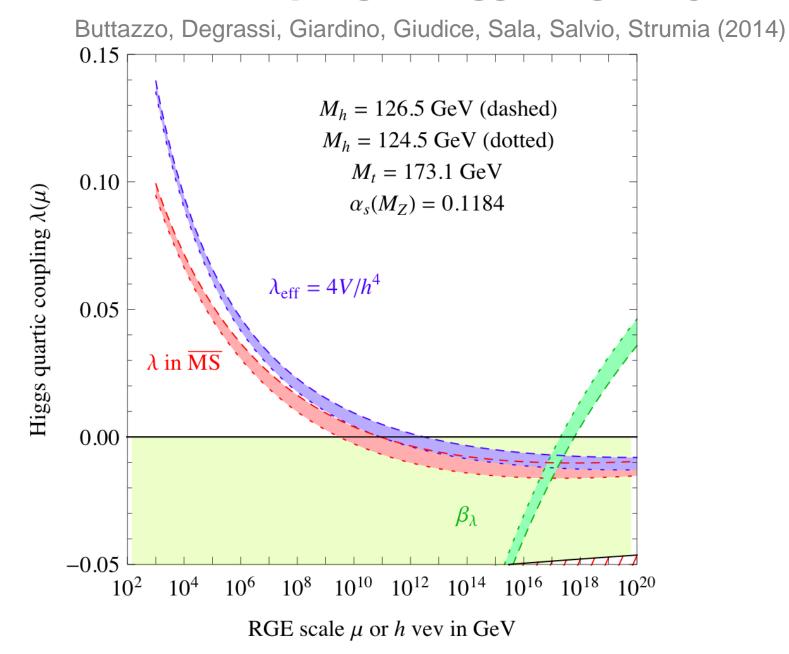
Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia (2014)



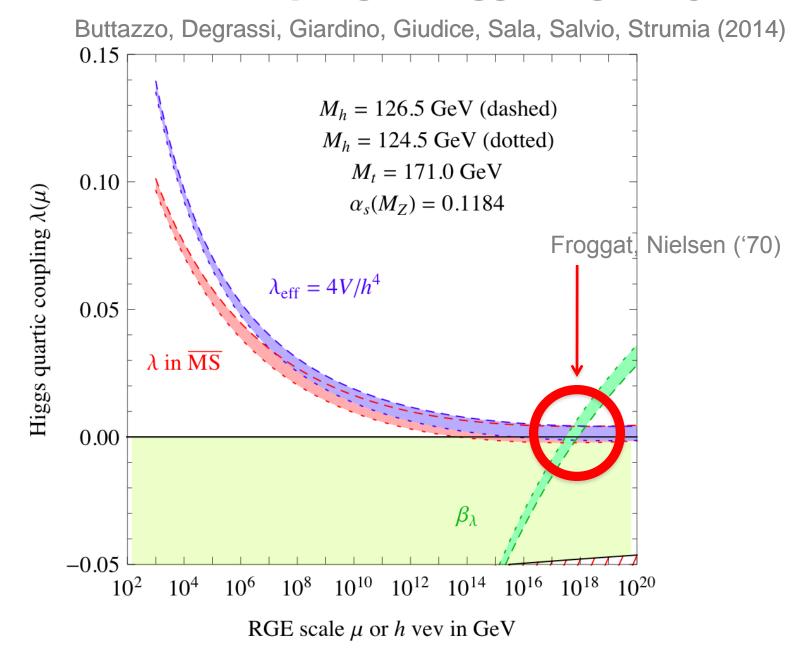
Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia (2014)

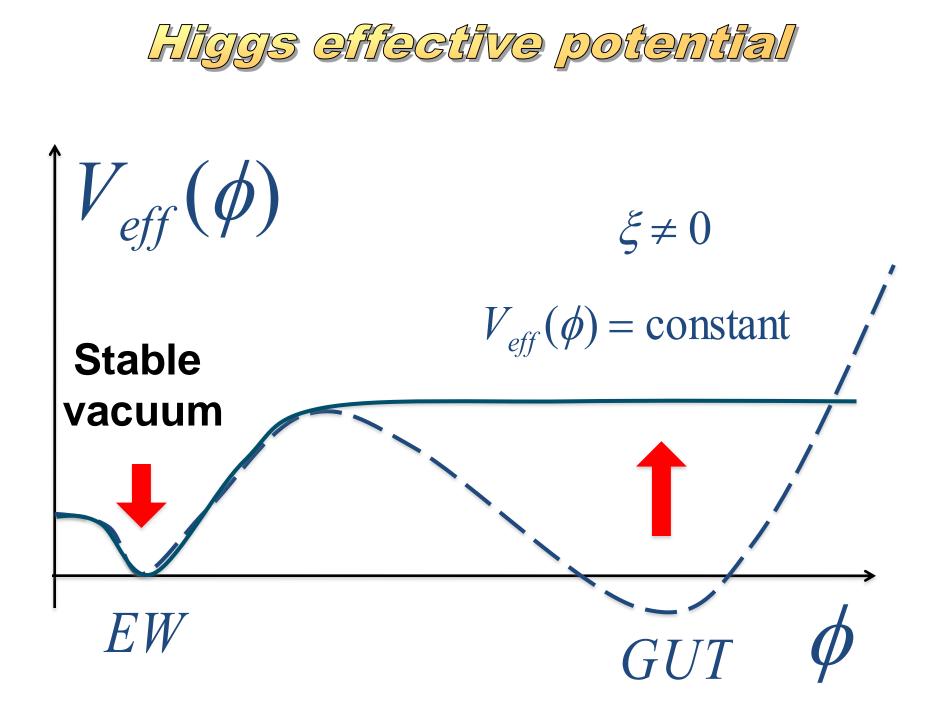
Non-minimal coupling of Higgs to gravity

Herranen, Markkanen, Nurmi, Rajantie (2014)

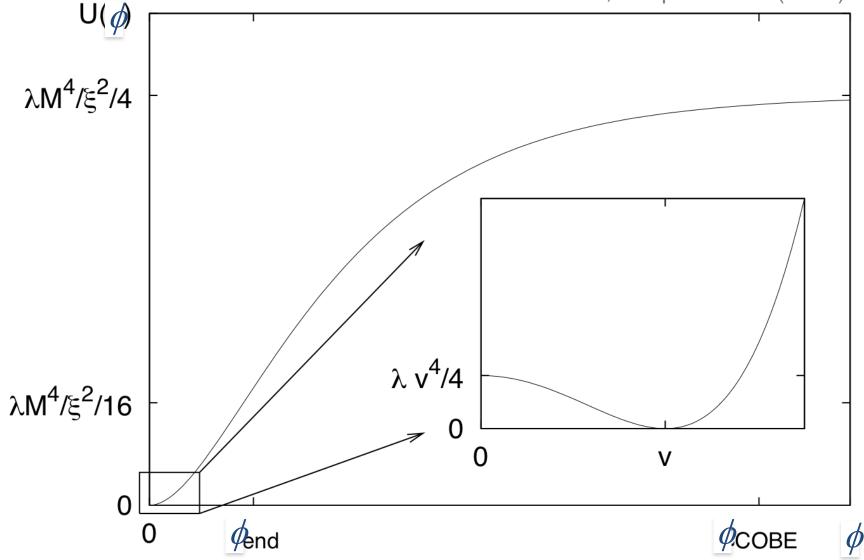


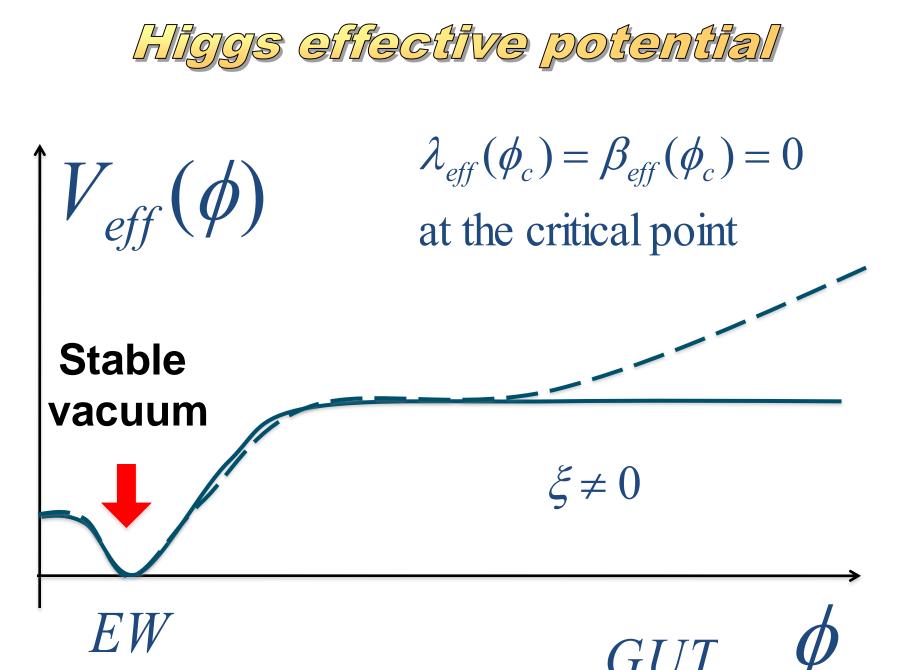
$$\begin{aligned} \text{Allison (2014)}\\ \beta_{\lambda} &= \frac{1}{(4\pi)^2} \left[\left(6 + 18s^2 \right) \lambda^2 - 6y_t^4 + \frac{3}{8} \left(2g^4 + (g^2 + g'^2)^2 \right) + \left(-9g^2 - 3g'^2 + 12y_t^2 \right) \lambda \right] \\ &+ \frac{1}{(4\pi)^4} \left[\frac{1}{48} \left((912 + 3s) \, g^6 - (290 - s) \, g^4 g'^2 - (560 - s) \, g^2 g'^4 - (380 - s) \, g'^6 \right) \\ &+ (38 - 8s) \, y_t^6 - y_t^4 \left(\frac{8}{3} g'^2 + 32g_s^2 + (12 - 117s + 108s^2) \, \lambda \right) \\ &+ \lambda \left(-\frac{1}{8} \left(181 + 54s - 162s^2 \right) g^4 + \frac{1}{4} \left(3 - 18s + 54s^2 \right) g^2 g'^2 + \frac{1}{24} \left(90 + 377s + 162s^2 \right) g'^4 \\ &+ \left(27 + 54s + 27s^2 \right) g^2 \lambda + \left(9 + 18s + 9s^2 \right) g'^2 \lambda - \left(48 + 288s - 324s^2 + 624s^3 - 324s^4 \right) \lambda^2 \right) \\ &+ y_t^2 \left(-\frac{9}{4} g^4 + \frac{21}{2} g^2 g'^2 - \frac{19}{4} g'^4 + \lambda \left(\frac{45}{2} g^2 + \frac{85}{6} g'^2 + 80g_s^2 - (36 + 108s^2) \, \lambda \right) \right) \right]. \end{aligned}$$

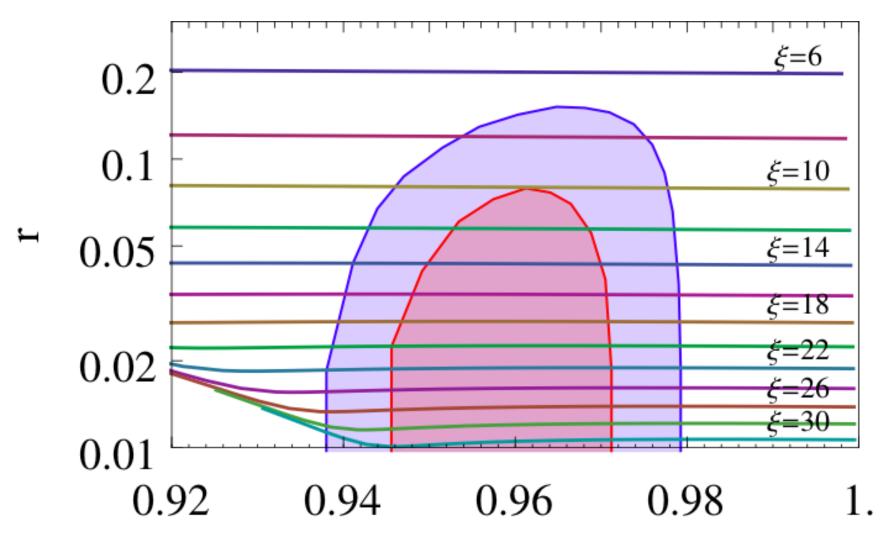

$$\beta_{\xi} &= \frac{1}{(4\pi)^2} \left(\xi + \frac{1}{6} \right) \left[\left(-\frac{199}{16} + \frac{27}{8}s \right) g^4 + \left(-\frac{3}{8} + \frac{9}{4}s \right) g^2 g'^2 + \left(\frac{3}{2} + \frac{485}{48}s \right) g'^4 \\ &+ \left(\frac{45}{4} g^2 + \frac{85}{12} g'^2 + 40g_s^2 \right) y_t^2 + \left(18 - \frac{63}{2}s \right) y_t^4 + \left(36g^2 + 12g'^2 - 36y_t^2 \right) (1 + s) \lambda \end{aligned}$$


$$+ \left(-108 + 126s - 144s^2 + 66s^3\right)\lambda^2 \right].$$
 (A)

Non-minimal coupling of Higgs to gravity


Non-minimal coupling of Higgs to gravity




Salopek, Bond, Bardeen (1989) Bezrukov, Shaposhnikov (2009)

Higgs inflation at the critical point

Bezrukov, Shaposhnikov (2014)

- The Standard Model plus Gravity has 3 dimensional parameters: G, v, ∧
- Could all scales have a common origin?
- Minimal extension of SM + GR with no dimensional parameter in the action:
 Scale invariance at the classical level
- S.I. maintained at the quantum level
- All scales induced by Spont. S.B. of S.I.
- → New scalar (singlet) d.o.f. = dilaton

- Dilaton is Goldstone Boson of S.B. of S.I.
- Dilaton is exactly massless
- Dilaton only couples to Higgs (derivatively)
- It cannot be detected in LHC collisions
- Substitute GR for Unimodular Gravity w/ no dimensional parameter in the action.
- The integration constant gives non-trivial potential for dilaton: thawing quintessence
- Dilaton is the massless Dark Energy field

JGB, Rubio, Shaposhnikov, Zenhausern (2011) Shaposhnikov, Zenhausern (2009)

Lagrangian:

$$\frac{\mathcal{L}}{\sqrt{-g}} = \frac{1}{2} \left(\xi_{\chi} \chi^2 + \xi_h h^2 \right) R - \frac{1}{2} (\partial_{\mu} \chi)^2 - \frac{1}{2} (\partial_{\mu} h)^2 - V(h, \chi) - \Lambda_0 ,$$

Einstein-frame metric:

$$\tilde{g}_{\mu\nu} = M_P^{-2} \left(\xi_{\chi} \chi^2 + \xi_h h^2 \right) g_{\mu\nu}$$

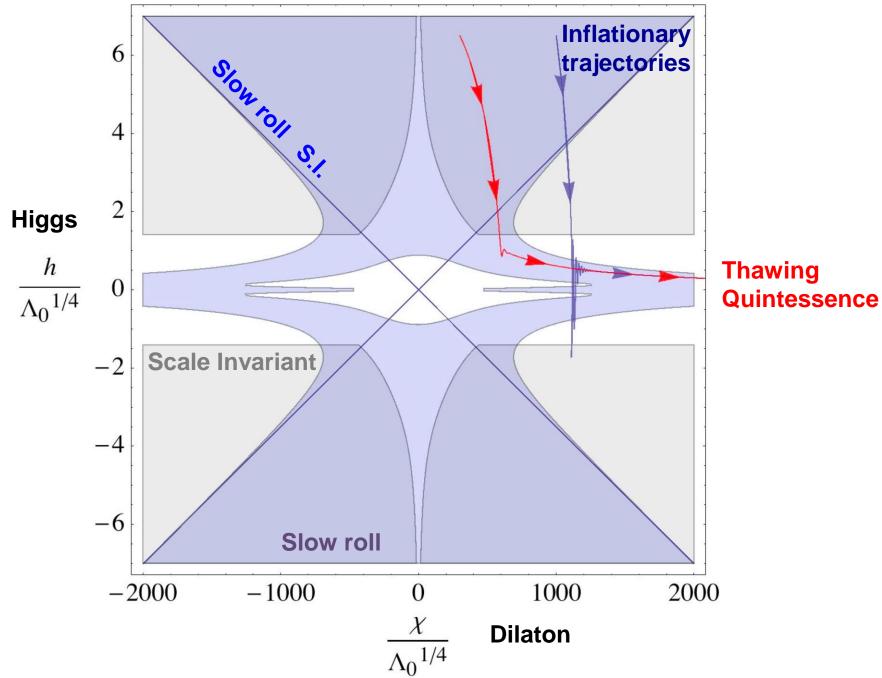
$$\frac{\mathcal{L}}{\sqrt{-\tilde{g}}} = M_P^2 \frac{\dot{R}}{2} - \frac{1}{2} \tilde{K} - \tilde{U}(h, \chi)$$
$$\tilde{K}(\chi, h) = \kappa_{ij}^E \tilde{g}^{\mu\nu} \partial_\mu \Phi^i \partial_\nu \Phi^j , \quad \kappa_{ij}^E \equiv \frac{1}{\Omega^2} \left(\delta_{ij} + \frac{3}{2} M_P^2 \frac{\partial_i \Omega^2 \partial_j \Omega^2}{\Omega^2} \right)$$
$$\tilde{U}(\chi, h) \equiv \frac{U(\chi, h)}{\Omega^4} \equiv \frac{M_P^4}{(\xi_\chi \chi^2 + \xi_h h^2)^2} \left(\frac{\lambda}{4} \left(h^2 - \frac{\alpha}{\lambda} \chi^2 \right)^2 + \Lambda_0 \right)$$

JGB, Rubio, Shaposhnikov, Zenhausern (2011)

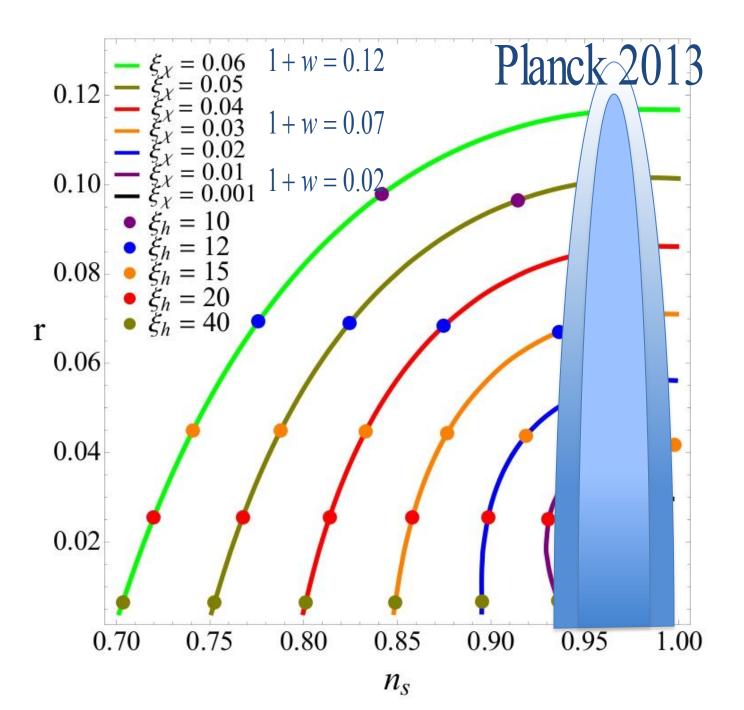
Noether current of scale invariance in E-frame:

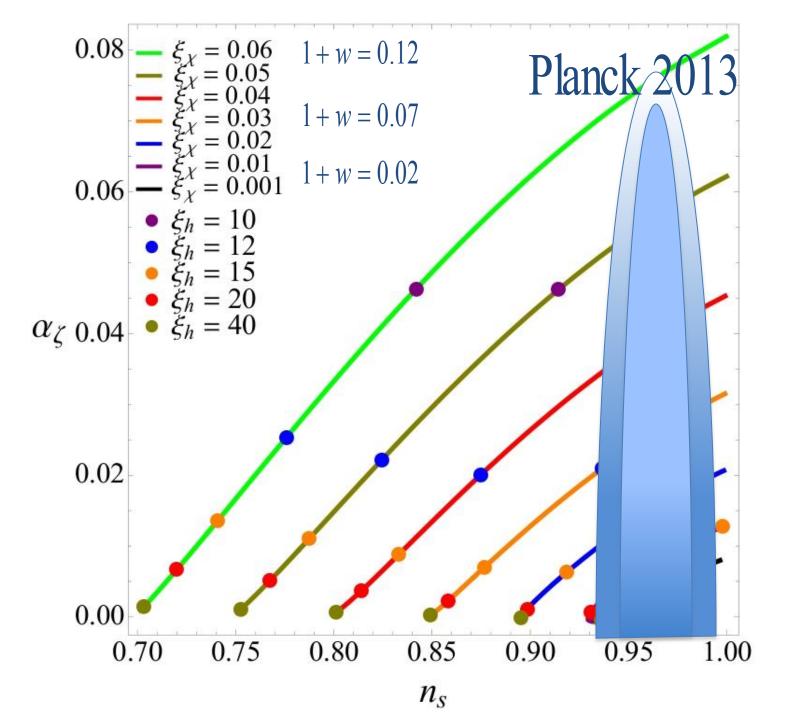
$$\tilde{D}_{\mu}\tilde{J}^{\mu} = -\frac{\partial V_{\Lambda_0}}{\partial \phi^i} \Delta \phi^i = \frac{4\Lambda_0}{\Omega^4} \qquad \eta = \frac{\xi_{\chi}}{\xi_h} \quad \text{and} \quad \varsigma = \frac{(1+6\xi_h)\xi_{\chi}}{(1+6\xi_{\chi})\xi_h}$$
$$\tilde{J}^{\mu} = \tilde{g}^{\mu\nu} \frac{M_P^2}{2(\xi_{\chi}\chi^2 + \xi_h h^2)} \partial_{\nu} \left((1+6\xi_{\chi})\chi^2 + (1+6\xi_h)h^2 \right)$$

Field redefinition (radial and angular coordinates):

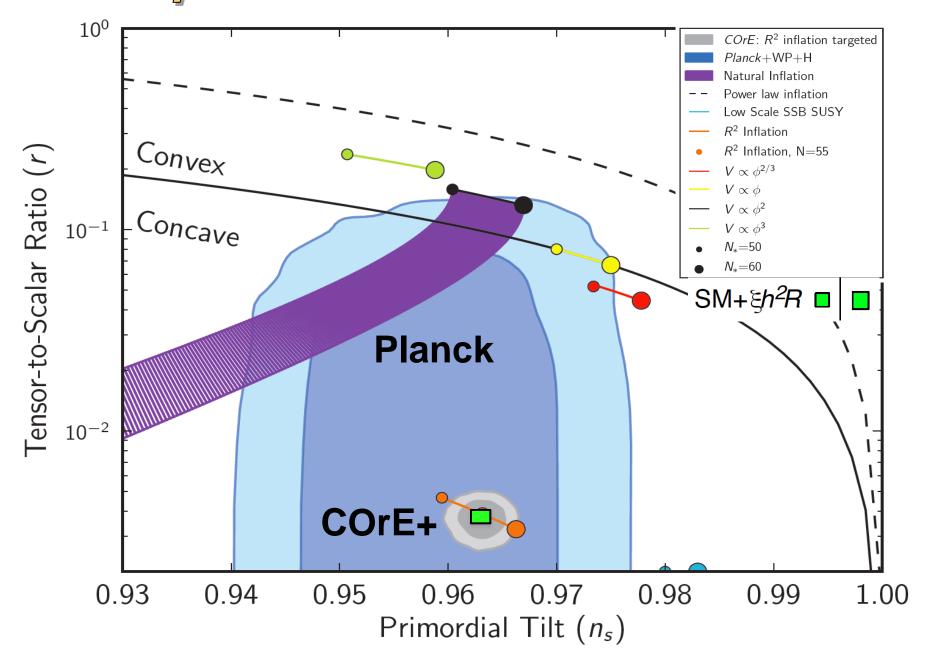

$$\rho = \frac{M_P}{2} \log \left[\frac{(1+6\xi_{\chi})\chi^2 + (1+6\xi_h)h^2}{M_P^2} \right] , \quad \tan \theta = \sqrt{\frac{1+6\xi_h}{1+6\xi_{\chi}}} \frac{h}{\chi}$$
$$\tilde{K} = \left(\frac{1+6\xi_h}{\xi_h}\right) \frac{1}{\sin^2 \theta + \varsigma \cos^2 \theta} (\partial \rho)^2 + \frac{M_P^2 \varsigma}{\xi_{\chi}} \frac{\tan^2 \theta + \eta}{\cos^2 \theta (\tan^2 \theta + \varsigma)^2} (\partial \theta)^2 ,$$

Inflationary potential:

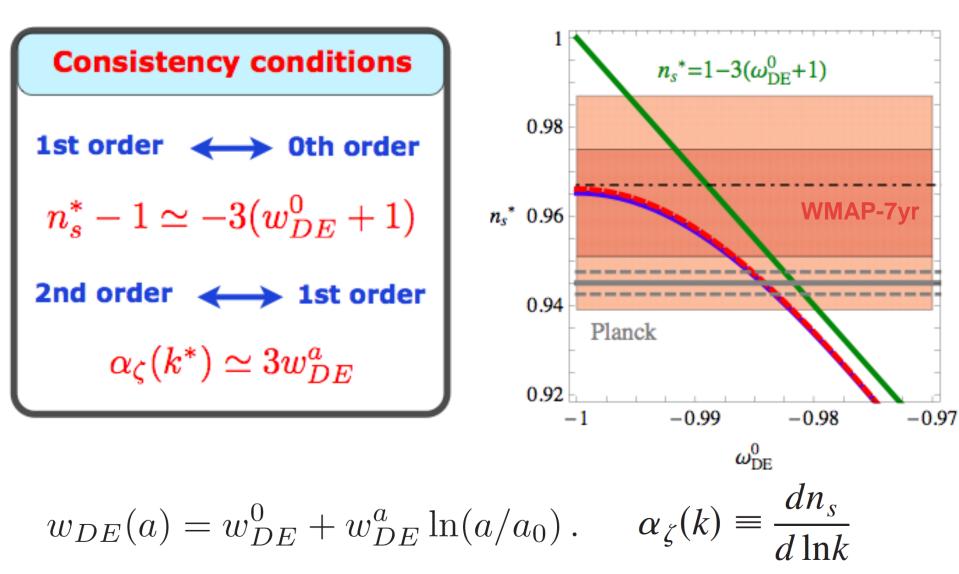

Quintessence potential:

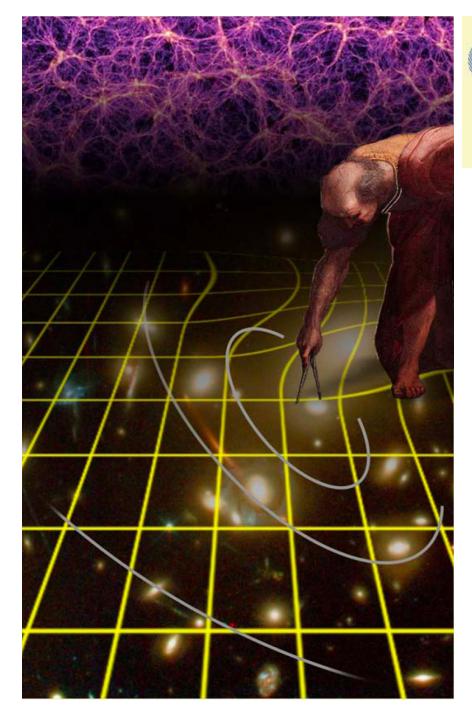

$$\tilde{U}(\theta) = \frac{\lambda M_P^4}{4\xi_h^2} \left(\frac{\sin^2 \theta}{\sin^2 \theta + \varsigma \cos^2 \theta}\right)^2 , \quad \tilde{U}_{\Lambda_0}(\rho, \theta) = \Lambda_0 \left(\frac{1 + 6\xi_h}{\xi_h}\right)^2 \frac{e^{-4\rho/M_P}}{(\sin^2 \theta + \varsigma \cos^2 \theta)^2}$$

JGB, Rubio, Shaposhnikov, Zenhausern (2011)



$$\begin{aligned} & \text{Preclicitous of Higgs-clitation inflation} \\ & \text{JGB, Rubio, Shaposhnikov, Zenhausern (201)} \\ & P_{\zeta}(k_0) \approx \frac{\lambda N^{*2}}{72\pi^2 \xi_h^2} \Big(1 + \frac{1}{3} (4\xi_{\chi} N^*)^2 + \ldots \Big), \quad \alpha_{\zeta}(k_0) \approx -\frac{1}{6} r(k_0) = \frac{4}{3} n_g(k_0), \\ & n_s(k_0) - 1 \approx -\frac{2}{N^*} \Big(1 + \frac{1}{3} (4\xi_{\chi} N^*)^2 + \ldots \Big), \quad \alpha_{\zeta}(k_0) < 0.97 \approx 1 - \frac{2}{N^*}, \\ & \alpha_{\zeta}(k_0) \approx -\frac{2}{N^{*2}} \Big(1 - \frac{1}{3} (4\xi_{\chi} N^*)^2 + \ldots \Big), \quad n_s(k_0) < 0.97 \approx 1 - \frac{2}{N^{*2}}, \\ & r(k_0) \approx \frac{12}{N^{*2}} \Big(1 - \frac{1}{3} (4\xi_{\chi} N^*)^2 + \ldots \Big), \quad r(k_0) < 0.0006 \approx -\frac{2}{N^{*2}}, \\ & \zeta(k_0) > -0.0006 \approx -\frac{2}{N^{*2}}, \\ & \gamma(k_0) \approx 0.0008 \text{ translates to } \\ & \xi_{\chi} \leq 0.008 \text{ translates to } \\ & \alpha_{\zeta}(k_0) \leq -0.00015, \\ & r(k_0) \geq 0.0009 \end{aligned}$$
reheating after inflation \qquad \text{JGB, Rubio, Shaposhnikov (2012)} \\ & \Delta N_{\text{eff}} \equiv \left(\frac{\rho_{\chi}}{\rho_{\nu}}\right)_{\text{f}} = \frac{g_0}{g_{\nu}} \left(\frac{g_f}{g_0}\right)^{4/3} C \simeq 2.85 \times 10^{-7} \ll 1. \\ & N_{\text{eff}} = N_{\text{eff}}^{\text{SM}} + \Delta N_{\text{eff}} \qquad (g_0 = 106.75, g_{\text{f}} = 10.75) \end{aligned}

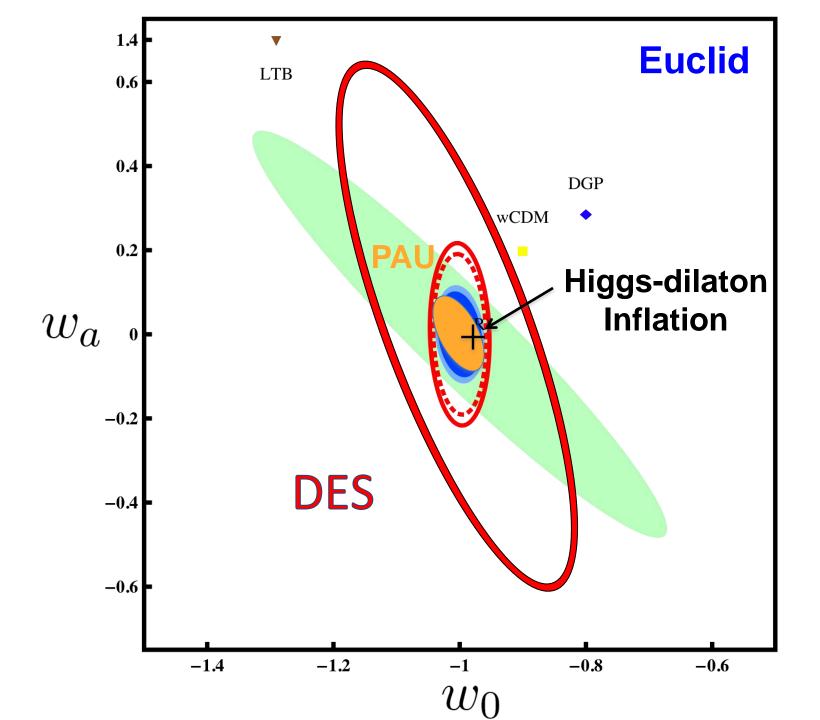



Spectral tilt - tensor to scalar ratio

Early Universe - Late Universe connection

JGB, Rubio, Shaposhnikov, Zenhausern (2011)

EUCLID


Spectroscopic survey

100 million galaxies 15,000 sq. deg $\Delta z_{spec} = 0.001 (1+z)$ 8 bins z range [0.5,2.1]

Cost: 1B\$

Imaging survey

1000 million galaxies 15,000 deg sq. $\Delta z_{photo} = 0.05 (1+z)$ 5 bins z range [0.5,3.0]

Conclusions

Particle Physics and Cosmology are intrincately related and can be tested with next generation experiments.

- Higgs-dilaton inflation is natural extension of SM + GR (broken scale invariance)
- Precise CMB experiments: COrE+, etc.
- Deep galaxy surveys: DES, LSST, Euclid
- We may find a connection between Early and Late Universe: $1-n_s = 3(1+w)$