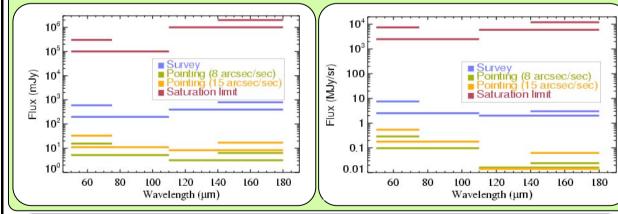

ASTRO-F astro-f.esac.esa.int/ helpdesk: astro-f@sciops.esa.int/

ASTRO-F is an infrared survey mission from the Institute of Space and Astronautical Science (ISAS) of the Japan Aerospace eXploration Agency (JAXA) with the participation of the European Space Agency (ESA).

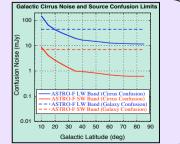
ISAS/JAXA's ASTRO-F Satellite, due for launch in early 2006, will perform an all-sky survey in six wavebands between 9 and 180 µm, at higher sensitivity, spatial resolution and larger wavelength coverage than IRAS. The resulting catalogues are expected to contain more than a million sources. Deep imaging and spectroscopic surveys with pointed observations will also be performed in selected areas of the sky.

ASTRO-F Construction of the second se


Basic FIS Capabilities:

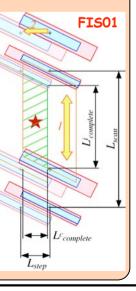
FIS is designed primarily to perform the All-Sky Survey in 4 photometric bands at wavelengths between 50 and 180 μ m (two broad bands and two narrow bands). The instruments are operated such that data acquisition is continuous as the telescope scans the sky, resulting in sets of strip data of sky brightness. This operation can also be used for pointed observations in a slow-scan mode for deeper observations.

FIS is also equipped with a Fourier Transform Spectrometer (FTS) that enables imaging spectroscopy over the full FIS wavelength range with a resolution of ~ 0.36 cm⁻¹ (R = 450 - 170) or 2.0 cm⁻¹ (R = 75 - 30). FTS observations are made as pointed observations. However, it is not yet decided whether the FTS mode will be available for Open Time Use.


FIS Photometric Mode			FIS Detectors	13"		
FIS Band	N60	WIDE-S	WIDE-L	N160	WIDE-S: 3x20	B WIDE-S 22"
Wavelength [µm]	50 - 75	50 - 110	110 - 180	140 – 180	N60: 2x20	26.5 deg
Central Wavelength [µm]	60	80	150	160	N160: 2x15	N160 WIDE-L
Array format	20 x 2	20 x 3	15 x 3	15 x 2	WIDE-L: 3x15	N60
Pixel size [arcsec ²]	27 x 27	27 x 27	44 x 44	44 x 44	Overlap each other	7.5 arcmin 44" x 44" / pixel
Field of View [arcmin]	Field of View [arcmin] 12.5 x 7.5				27" x 27" / pixel	

Sky Confusion Estimates: Very likely, FIS observations will be affected by galactic cirrus noise and background source confusion. Users are encouraged to take confusion into account when planning observations, it may save significant amount of observing time. The sky confusion noise due to galactic diffuse emission (cirrus) is a function of Galactic Latitude with a dependence given by the figure.

Sky confusion tool: http://www.ir.isas.jaxa.jp/ASTRO-F/Observation/Confusion/


FIS Astronomical Observation Templates (AOT):

Two AOTs are prepared for the FIS OT pointed observations.

These AOTs are still not final. Further optimization is expected in the coming few months both from the instrument performance and scientific requirements.

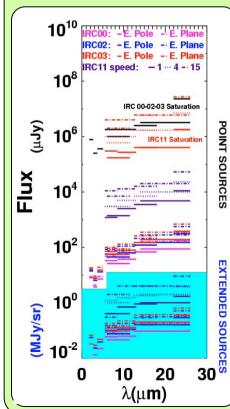
• **FIS01:** Photometry of point sources and/or mapping of small areas of sky of up to around ~25 x 10 arcmin². All four bands are available. Scan pattern: two round-trip scans with a cross-scan shift. Scan speed is either 8 arcsec/sec or 15 arcsec/sec.

• FIS02: Mapping of large areas (~1 deg x 8'). All four bands are available. Scan pattern: one round-trip scan with fixed speed of 15 arcsec/sec. No cross-scan shift is operated during a pointed observation to maximize the scan length.

ASTRO-F Observers' Fact-sheet V 1.2 (31 May 2005) http://www.astro-f.esac.esa.int/ helpdesk: astro-f@sciops.esa.int ASTROSF CONS. Cesa The Infrared Camera (IRC) instrument will carry out an All-Sky Survey at 9 and 20 µm and will perform pointed NFRARED CAMERA (IRC) observations in 9 photometric bands and 6 spectroscopic elements in the $2 - 26 \,\mu m$ range.

Basic IRC Capabilities: The IRC consists of three cameras: NIR. MIR-S & MIR-L. Each camera is equipped with three filters and two dispersion elements. The filters can be chosen from a limited number of pre-determined combinations defined in each AOT. Only NIR and MIR-S share the same FoV. This means that at least two pointed observations in different revolutions are needed to observe a particular position with all three cameras.

An IRC pointed observation consists of an n times repeated exposure cycle and various operations between them (micro-scan and filter changes). One exposure cycle takes 65.45 s in the current design, during which NIR carries out one short (2.3 s) and one long (51 s) exposures, and MIR cameras carry out one short (0.6 s) and three long (19 s) exposures.

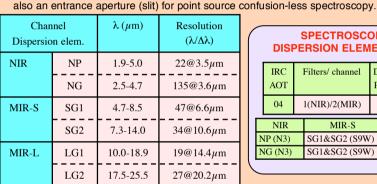

Channel

Channel	FoV (arcmin²)	Image area (pixel²)	Pixel size (arcsec²)
NIR	9.5x10.0	391x412	1.46x1.46
MIR-S	9.1x10.0	233x256	2.34x2.34
MIR-L	10.3x10.2	246x256	2.51x2.39

IRC Imaging: 50 detection and saturation limits for a pointed observation in imaging mode (IRC 00-02-03 and 11), computed at the ecliptic pole and at the ecliptic plane.

IRC11 values correspond to different scan speeds (in arcsec/sec).

Point source detection limits are given in μ Jy and extended source detection limits in MJy/sr.

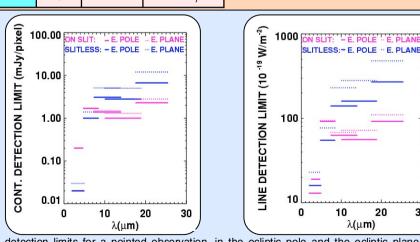

	N2	1.8-2.7	
NIR	N3	2.7-3.7	
	N4	3.7-5.05	
	S7	5.5-8.5	
MIR-S	S9W	6.0-11.5	
	S11	8.5-13.0	
	L15	12.5-18.0	
MIR-L	L20W	14.0-26.0	
	L24	22.0-26.0	

Filters

 λ (µm)

IMAGING AOTs & FILTER SELECTION

	IRC AOTs & Purpose		Filters/ channel	Dithering Pos/filter		# of pointing			
	00 Deep imaging		1	No		≥ 6			
	02		2	3		low			
	03		3	2		≥ 2			
	11 Slow	/-Scan	1	N/	V/A ?				
		NIR	MIR	-S		MIR-L			
		OPTIONS (one of the tree sets)			ets)				
		N2	S9W		L20W				
	IRC00	N3	S7		L15				
		N4	S11		L24				
	IRC02	N3&N4 S7&S11 L15&L24		:L24					
	IRC03	N2&N3&N4 S7&S9W&S11 L15&L20W&L			L20W&L24				
		OPTIONS (one of the three sets)				nree sets)			
		N/A	S9W		L20W				
	IRC11	N/A	S7		L15				
		N/A	S11		L24				
(IN/A	511		L24				


elements (NP: PRISM; NG: GRISM) can be selected at a time.

A short exposure image will be taken for pointing alignment.

SPECTROSCOPIC AOT & **DISPERSION ELEMENT SELECTION**

IRC AOT	Filters/ channel	Dithering Pos/filter	# of pointing	
04	1(NIR)/2(MIR)	No	≥ 2	
NIR	MIR-S]	MIR-L	
IP (N3)	SG1&SG2 (S9W) LG1&L	.G2 (L20W)	,
NG (N3) SG1&SG2 (S9V) LG1&L	.G2 (L20W)	1
	AOT 04 NIR IP (N3)	AOT Image: Constraint of the second sec	AOT Pos/filter 04 1(NIR)/2(MIR) No NIR MIR-S Image: Second s	AOT Pos/filter pointing 04 1(NIR)/2(MIR) No ≥ 2 NIR MIR-S ✓ ∠ IP (N3) SG1&SG2 (S9W) LG1&∠C2 (L20W)

30

IRC Spectroscopy: The MIR-S and MIR-L cameras always observe with two dispersion

elements (GRISM) to cover their full wavelength range, while only one of the NIR dispersion

A slit is provided in each camera in order to observe diffuse radiation. The NIR camera has

 5σ detection limits for a pointed observation, in the ecliptic pole and the ecliptic plane. Line detection limits are given for integrated line fluxes. Continuum detection limits are given per pixel. Integrating over the area of the resolution bin and over the image size can improve the detection.