CESAR Science Case - Calculation guide

Calculate the heliographic coordinates of a sunspot

$$
\begin{aligned}
& R_{m}=\sqrt{X^{2}+Y^{2}} \\
& P_{m}=\operatorname{arctg}(X / Y) \\
& \rho=\arcsin \left(R_{m} / R\right)-\alpha / 2\left(R_{m} / R\right) \\
& \operatorname{sen}(B)=\operatorname{sen}(B 0) \cos (\rho)+\cos (B 0) \operatorname{sen}(\rho) \cos (P-P m) \\
& \operatorname{sen}(L-L 0)=\operatorname{sen}(P-P m) \operatorname{sen}(\rho) \cos (B)
\end{aligned}
$$

Where X and Y are the coordinates of a sunspot measured in pixels on the image and L, B the heliographic longitude and latitude.

Use the value of 0.5244° for summer, 0.5422° for winter and 0.5333 for autumn/spring in the North hemisphere.
L_{0}, B_{0}, and P have to be taken from the Ephemeris.

Calculate the rotation period of the Sun

$$
\begin{aligned}
& S=360^{\circ} \frac{\Delta t}{\Delta L} \\
& P=(S * 365,25) /(S+365.25)
\end{aligned}
$$

Where $\frac{\Delta t}{\Delta L}$ could be calculated with: the next formula or just dividing the time between two images by the number of degrees that a sunspot has been moving.

$$
\frac{\Delta L}{\Delta t}=\frac{\cos ^{-1}\left(\frac{x_{3}-\varphi}{\varphi}\right)-\cos ^{-1}\left(\frac{\varphi-\left(x_{2}-x_{1}\right)}{\varphi}\right)}{\left(t_{2}-t_{1}\right)}
$$

Wolf number

$$
W=k(10 g+s)
$$

