Stable and Unstable Regimes of Mass Accretion onto RW Aur A

M. Takami¹, Y.-J. Wei¹, M.-Y. Chou¹, J.L. Karr¹, T.L. Beck², N. Manset³, W.-P. Chen⁴, R. Kurosawa⁵, M. Fukagawa⁶, M. White⁷, R. Galvan-Madrid⁸, H.B. Liu^{1,9}, T.-S. Pyo¹⁰, J.-F. Donati¹¹

¹ASIAA (Taiwan) ²STScI ³CFHT ⁴National Central Univ. (Taiwan) ⁵MPIfR ⁶NAOJ ⁷Australian National Iniversity ⁸UNAM ⁹ESO ¹⁰Subaru ¹¹UPS-Toulouse/CNRS-INSU

We present monitoring observations of the active T Tauri star RW Aur using optical high-resolution (R \geq 10⁴) spectroscopy with CFHT-ESPaDOnS. The observations were made in five autumn-winter semesters (2010B/2011B/2012B/2013B/2014B), with 2-4 observing runs for each semester, and 1-7 visits during each run, with intervals of 1-10 nights. The changes in the observed line profiles and published Vmagnitudes qualitatively agree with the theory of magnetospheric mass accretion with enhanced and suppressed magnetic Rayleigh-Taylor (RT) instabilities. However, the large decreases in photometric flux and the weakness or absence of photospheric absorption during the faint periods challenge the existing theories.

Theoretical Predictions

(Romanova+ 2008, ApJ, 673, L71; Kurosawa+ 2013, MNRAS, 431, 2673)

