Multi-component line emission in young Stars. Spectroscopy and Interferometry
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/ Intermediate-mass young stars (Herbig Ae/Be stars) have a very complex environment consisting of accreting and outflowing matter. To determine the geometrical structure and physical \
properties of this environment, we develop models that are able to reproduce the spectroscopic and interferometric observables such as hydrogen line profiles as well as visibilities,

differential and closure phases. For non-LTE modeling of the emission in the hydrogen lines, we use the Sobolev approximation. Fitting the spectroscopic and interferometric observables
permits us to constrain the model parameters and find main contributors to the line emission of components such as the magnetosphere, disk wind and accretion disk. Modeling the infrared
hydrogen line Bry is important because it probes regions near the star, which cannot be resolved with single telescopes but with IR interferometers. In a series of publications, we present a

full description of the radiative transfer problem in different regions emitting hydrogen lines and examples of the line profiles of Balmer, Paschen and Brackett series lines as well as line
radiative transfer models of the Bry line emitting region that are able to reproduce all interferometric observables, that is, the line intensity, line profile, visibilities, differential phases, and
Qosure phases (Grinin & Tambovtseva 2011, Weigelt et al. 2011, Tambovtseva et al. 2014, Garcia Lopez et al. 2015, Caratti o Garatti et al. 2015).
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To consider the role of disk winds in the formation of the emission spectra of intermediate—mass young Herbig AeBe stars, we have performed non-LTE computations of the
hydrogen emission lines. Level populations were computed in the Sobolev approximation, and we computed the radiation intensity from the disk wind at the spectral-line frequencies

via exact integration over the spatial coordinates assuming a complete redistribution in frequency in the associated coordinate system.

Our computations demonstrate that the disk-wind region contributes substantially to the radiation in hydrogen lines of all series considerd (Balmer, Paschen and Brackett). The
intensities and shapes of the profiles depend on the wind geometry and kinematics. Using various parameters of the wind models and inclinations, we are able to obtain a large

variety of profile shapes.

These lines are also formed in the magnetosphere regions with accreting matter near Herbig Ae stars, but our computations show that this region does not dominate in the
spectra of such stars. Nevertheless, this region should also be taken into account when computing line profiles, since it can appreciably affect the hydrogen line profiles.
Modeling both the IR hydrogen line Bry and all available interferometric observations allows us to constrain the wind parameters and makes it possible to extract additional

information about the disk+star system, such as the disk inclination.
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