ESA/ESTECH, Noordwijk, the Netherlands, 10/29/2015

Towards a Global Evolutionary Picture of Protoplanetary Disks

Xuening Bai

Institute for Theory and Computation Harvard-Smithsonian Center for Astrophysics

Prelude: initial condition

Protostellar cores threaded by strong B field

(e.g. Crutcher, 12, Hull+13)

 ~100 AU disk formation in class 0 phase (e.g., Tobin+12,15,Murillo+13,Ohashi+14,Harsono+14,Yen+15)

Magnetic breaking catastrophe? (Mellon & Li 08)

Problem largely solved by turbulent collapse/misaligned field/non-ideal MHD (e.g. Machida+10,Santos-Lima+11, Seifried+12,13, Joos+12,13, Li+13, Tomida+13,15)

Hall-effect induced bimodality (Tsukamoto+15):

What drives global disk evolution

- Angular momentum transport (radially/vertically)
- Mass loss (via disk wind)

Radial transport of angular momentum

Prescribe radial profile of $\alpha \Rightarrow$ disk evolution is straightforward.

Hydro processes	GI, VSI (GSF), baroclinic/ convective, zombie vortex… spiral shocks	see G. Lesur's talk for more details about these processes see E. Borobyov's talk for early disk evolution with GI
MHD processes	turbulent stress (due to the MRI) laminar stress (i.e., spiral field)	

 α -disk model OK only when radial transport of AM dominates

Vertical transport: magnetized disk wind

Thermal ionization zone: ionization of Na/K above ~800 K (Desch & Turner 15)

Cosmic-ray ionization: large penetration depth, can be affected by wind (Umebayashi & Nakano 81, Cleeves+13)

(Igea & Glassgold 99, Ercolano & Glassgold 13)

Stellar Far UV ionization: fully ionize C, S with small penetration depth (Perez-Becker & Chiang 11)

Stellar X-ray ionization: modest penetration depth

Radioactive decay: time-dependent, ~10⁻¹⁹ s⁻¹ (Umebayashi & Nakano 09).

Importance of grain size and abundance

- Ionization level strongly depends on grain size/abundance as long as grain abundance > ionization fraction.
- Grains can become the dominant charge carrier.

Disk microphysics: non-ideal MHD effects

Generalized Ohm's law is in tensor form: $oldsymbol{J} = oldsymbol{\sigma}(oldsymbol{B}, oldsymbol{E})oldsymbol{E}$

Induction equation (grain-free):

Further complications:

Non-linear Ohm's law (Okuzumi+15)

Complex dependence of diffusivities on B (Wardle 07, Bai 11b, Xu & Bai, in prep)

Ohmic resistivity only

• Semi-analytical studies already indicated that MRI is insufficient to drive rapid accretion when including the effect of ambipolar diffusion (Bai & Stone, 2011, Bai, 2011a,b, Perez-Becker & Chiang, 2011a,b).

Ohmic + ambipolar diffusion

(Bai & Stone 13b, Bai, 2013, Simon, Bai+ 13a,b, Gressel+15)

MRI suppressed by Ohmic+AD, disk largely laminar.

MRI damped by AD

Wind launching process (inner PPDs)

Adding the Hall effect: inner Disk

All three non-ideal MHD effects are important.

Unstratified simulations: Kunz & Lesur 13 (local), O'Keeffe & Downes 14 (global) Stratified simulations in shearing-box: Lesur+14, Bai 14,15, Simon+15

Dependence on grain abundance

- **Grain-free:** (Lesur+14, Simon+15)
 - $\mathbf{\Omega} \cdot \mathbf{B} > 0$: Very strong B field amplification to near equipartition, considerable α (up to 0.1) to transport AM.
 - $\boldsymbol{\Omega} \cdot \boldsymbol{B} < 0$: Bursty behavior with enhanced α at ~5-10 AU.

Modest grain abundance (0.1µm, 0.01 solar): (Bai, 14,15)

- $\mathbf{\Omega} \cdot \mathbf{B} > 0$: Modest B field amplification well below equipartition, enhanced but small α (<<0.01).
- $\mathbf{\Omega} \cdot \mathbf{B} < 0$: Horizontal B field reduced to almost 0, no bursty behavior.
- **High grain abundance** (0.1µm, solar): (Xu & Bai, in prep)
 - $\mathbf{\Omega} \cdot \mathbf{B} > 0$: Hall diffusivity changes sign at normal field strength, B field amplification suppressed.

Dependence on grain abundance

Wind solutions modified, but some gets unstable

(Bai, 2014)

Representative results at 5 AU

$\beta_{z0} \sim 10^5$

Current status

- Net vertical magnetic flux is essential through entire disk.
- Disk microphysics is much better understood, but its parameter dependence is complex, especially on the ionization chemistry and grains (in the inner disk).
- Launching of disk wind is natural consequence of net Bz, with two major issues to be addressed:
 - Global wind structure and kinematics.
 - Local simulations have issues with wind symmetry.
- Level of turbulence/role of MRI less clear in outer disk (e.g., Simon+15, Flaherty+15): depend on FUV penetration (A.
 Gomez de Castro's talk). Wind likely dominates transport.

Mass loss from PPDs: magnetized wind

(Bai, Ye, Goodman & Yuan, to be submitted)

Wind kinematics

Expected wind launching conditions @ 1AU: $v_{A0} \approx 0.1 v_K$

Thermal effect: magneto-photoevaporation?

With B field, mass loss rate is always higher than pure thermally driven wind.

Towards a global picture: wind-driven accretion

- Dependence on v_{A0}/c_s translates to:
 - a. Physical field strength B

Note
$$v_{A0} = \frac{B_{p0}}{\sqrt{4\pi\rho_b}}$$

- b. Penetration depth of FUV => density at wind base
- c. Wind temperature

Towards a global picture: wind-driven accretion

disk

 η_*

 B_7

Okuzumi+14

Need to know the distribution of magnetic flux

Need to incorporate wind and non-ideal MHD physics.

(e.g., Bai 14, Tsukamoto+15)

Towards a global picture: wind-driven accretion

Need to know how deep FUV penetrates

A complex task of coupling UV radiative transfer and photochemistry.

(e.g., Glassgold+04, Nomura & Millar 05, Woitke+09, Walsh+10,12, Bethell & Bergin 11, Akimkin+ 13)

and with wind dynamics...

(e.g., Panoglou+12)

Summary

- Initial condition: disk formation to be better understood
 - > Hall effect can induce a bimodality in disk size, as well as amount of B flux
- MRI is disfavored, accretion is largely wind driven
 - > Inner disk: suppressed by Ohmic+AD; outer disk: strongly damped by AD
 - > MND wind launching from far-UV ionization front.
- Hall effect is polarity dependent, important at inner disk
 - > Disk dynamics depends on grain abundance: more grains suppress activities.
 - > Despite unsettled issues, wind still likely dominates AM transport.
- Disk wind-driven accretion as the key to global disk evolution
 - > Results strongly depend on both B flux distribution and thermal effects
 - Need to better understand magnetic flux transport