

Scott G. Gregory

University of St Andrews | 1413

FOUNDED

Hel 10830Å as an accretion diagnostic

- (top to bottom) Pγ, Hel 5876Å (when available), Hel 10830Å.
- 10830Å is a more sensitive probe of accretion; subcontinuum redshifted absorption is more common.

Models of redshifted absorption in HeI 10830Å with dipole magnetospheres - Fischer et al 2008

- To explain the breadth of the red absorption, wide accretion columns often required – resulting in large hotspots & too much veiling.
- Introduced the idea of "accretion streamlets" – dilute columns of accretion

Large-scale magnetic fields of accreting PMS stars become more dominantly octupolar with

Accreting PMS stars with ~dipole + octupole magnetic fields

Star	Date	Bdip (kG)	Dipol e tilt	Phas e dip tilt	Boct (kG)	Octup ole tilt	Phas e oct tilt	Boct /Bdi p
AA Tau	Jan0 9	1.7	1700	0.65	0.5	100	0.5	0.3
BP Tau	Feb0 6	1.2	200	0.65	1.6	100	0.15	1.3
GQ Lup	Jun1 1	0.9	300	0.05	1.6	00	-	1.8
DN Tau	Dec1 2	0.3	250	0.9	0.6	00	-	2.0
V2129 Oph	Jul09	1.0	150	0.4	2.2	200	0.5	2.2
•TW Hty as the location of the main positive pole relative								
to the vosible stellar rotation pole (updated from								
Gregory & Donati 2011).								

Axisymmetric dipole & octupole magnetic fields

Parallel dipole & octupole moments

Axisymmetric dipole & octupole magnetic fields

Axisymmetric dipole + octupole magnetic fields

(Gregory, Fischer & Hillenbrand, in prep.)

Dipole + octupole magnetic null point

- The magnetic topology depends on the ratio of the polar field strengths Boct/Bdip.
- Magnetic null point:

$$r_{null} = \left(\frac{3}{4}\frac{B_{oct}}{B_{dip}}\right)^{1/2} R_*$$

 Equatorial shell of closed field only exists when Boct/Bdip > 4/3.

Disk truncation with dipole + octupole fields

 Parallel (anti-parallel) moments, Bz at inner disk smaller (larger) than the dipole case: disk truncated closer (farther) from the star.

Disk truncation with dipole + octupole fields

- The stronger the octupole relative to the dipole the closer the disk is to the star for ~parallel moments.
- Disk farther from the star if moments ~anti-parallel.
- Truncation dominated by the dipole part of the field.

Accretion flow/spots with dipole + octupole fields

- Accretion column is "squeezed" by the complex surface field.
- Higher (lower) latitude accretion spots compared to a dipole for parallel (anti-parallel) moments.
- Higher pre-shock densities (e.g. Gregory et al 2007).

Smaller, denser, hotter accretion spot & less veiling with dipole + octupole fields

- Hot spot covering fraction lower for non-dipole fields.
- Surface field squeezes large scale field.
- Veiling is reduced relative to the dipole case; temperature & density are increased.

Smaller, denser, hotter accretion spot & less veiling with dipole + octupole fields

- Hot spot covering fraction lower for non-dipole fields.
- Surface field squeezes large scale field.
- Veiling is reduced relative to the dipole case; temperature & density are increased.

Smaller, denser, hotter accretion spot & less veiling with dipole + octupole fields

- Hot spot covering fraction lower for non-dipole fields.
- Surface field squeezes large scale field.
- Veiling is reduced relative to the dipole case; temperature & density are increased.

Subcontinuum absorption at Hel 10830Å

- Red line = dipole;
 black line =
 dipole+octupole.
- Updated from Fischer et al (2008)
- Analysis of redshifted absorption components can produce erroneous parameters if the magnetic topology is unknown.

Summary

- ~half of the accreting PMS stars with derived magnetic maps have large-scale magnetospheres that are well described by a tilted dipole plus a titled octupole component.
- Field geometry controls the shape, size, temperature, and density of accretion spots.
- Subcontinuum redshifted absorption influenced by the magnetic topology.

Analytic multipole models

Multipole of order I, tilted by β relative to the stellar rotation axis, towards longitude $\psi = (1-\text{phase})^*3600$.

$$\mu_r = \mu \sin \theta \cos \phi \cos \psi \sin \beta + \mu \sin \theta \sin \phi \sin \psi \sin \beta + \mu \cos \theta \cos \beta$$

$$\mu_{ heta} = \mu \cos \theta \cos \phi \cos \psi \sin \beta + \mu \cos \theta \sin \phi \sin \psi \sin \beta - \mu \sin \theta \cos \beta$$

$$\mu_{\phi} = -\mu \sin \phi \cos \psi \sin \beta + \mu \cos \phi \sin \psi \sin \beta.$$

$$\mathbf{B} = \frac{B_{*}^{\ell,pole}}{(\ell+1)} \left(\frac{R_{*}}{r}\right)^{\ell+2} \sum_{k=0}^{N} \left\{ \frac{(-1)^{k} (2\ell-2k)!}{2^{\ell} k! (\ell-k)! (\ell-2k)!} (\hat{\boldsymbol{\mu}} \cdot \hat{\mathbf{r}})^{\ell-2k} \left[(2\ell-2k+1)\hat{\mathbf{r}} - (\ell-2k) (\hat{\boldsymbol{\mu}} \cdot \hat{\mathbf{r}})^{-1} \hat{\boldsymbol{\mu}} \right] \right\}$$

where $N = \ell/2$ or $N = (\ell - 1)/2$ whichever is an integer.

(Gregory et al 2010; Gregory & Donati 2011)

V2129 Oph: Jul09 (upper) Jun05 (lower)

