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Squaring the circle in YSO
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The origin of accretion in weakly ionised protoplanetary discs



Angular momentum transport processes 
I- turbulent (viscous) transport

Transport angular momentum in the bulk of the disc 
Suggested by Shakura & Sunyaev (1973) A&A, 24, 337 
Turbulence leads to enhanced transport («mixing length theory») 
One defines a turbulent viscosity
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⌫t = ↵csH

Angular momentum

10�3 < ↵ < 10�2

2H

«turbulent transport» «sound speed» «1/2 disc thickness»



Angular momentum transport processes 
II- disc wind

Angular momentum extracted from the disc by a magnetic wind 
[Blandford & Payne 1982, MNRAS, 199, 883] 
Magnetic field exerts a torque on the disc surface which generates accretion 
(not described by α-disc!)
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Angular momentum



MHD processes
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The magnetorotational instability (MRI)

Field line

A
B

A

B

[Balbus, & Hawley (1991) ApJ, 376, 214] 
[Balbus (2003) ARA&A, 41, 555]
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Ideal MHD instability, modified (possibly 
suppressed) by nonideal effects



Ionisation sources in protoplanetary discs

6

~1AU ~10AU

Thermal 
ionisation

X-rays 
Far-UV

Cosmic rays

R (AU)

z
/
R

Ionisation Fraction

 

 

10−1 100 101 1020

0.05

0.1

0.15

0.2

−12

−10

−8

−6

−4

The ionisation fraction is very low  
Exact value is strongly model dependent (grains, metallicity)

Optimistic picture: shielding of cosmics [Cleeves+2013] 
FUV and X-rays [Gomez de Castro’s talk] is neglected



Question to observers #1:
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Can we get observational constrains on the ionisation fraction in 
protoplanetary discs ?



Dead zone in protoplanetary discs

3 non ideal effects enter the scene 

Ohmic diffusion (collisions between electrons and neutrals) 

Ambipolar Diffusion (collisions between ions and neutrals) 

Hall Effect (drift between electrons and ions) 

Amplitude of these effects depends strongly on location & composition
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Nonideal MHD effects

[Simon+ 2015]

1120 J. B. Simon et al.

Table 1. Shearing-box simulations.

Label Radius Rm RH Am β0 α αmid
(au)

1-OHA-5p-LKF 1 2.9 0.011 0.24 105 5.0 × 10− 2 3.5 × 10− 2

1-OHA-5n-LKF 1 2.9 0.011 0.24 − 105 3.9 × 10− 4 − 9.0 × 10− 7

1-OHA-3p-LKF 1 2.9 0.011 0.24 103 3.1 × 10− 1 2.2 × 10− 1

5-OHA-3n 5 1400 0.66 2.5 − 103 2.4 × 10− 2 2.2 × 10− 5

5-OHA-4n 5 1400 0.66 2.5 − 104 5.0 × 10− 3 8.4 × 10− 4

5-OHA-5p-LKF 5 1400 0.66 2.5 105 2.0 × 10− 2 2.1 × 10− 2

5-OHA-5n 5 1400 0.66 2.5 − 105 3.3 × 10− 3 2.3 × 10− 3

5-OHA-5n-diff 5 1400 0.66 0.25 − 105 6.3 × 10− 4 3.1 × 10− 7

5-OHA-5n-axi 5 1400 0.66 2.5 − 105 9.3 × 10− 4 7.9 × 10− 7

5-OA-5n 5 1400 ∞ 2.5 − 105 9.2 × 10− 4 1.0 × 10− 4

10-OHA-5p-LKF 10 10 000 1.8 3.2 105 1.0 × 10− 2 9.3 × 10− 3

10-OHA-5n 10 10 000 1.8 3.2 − 105 4.6 × 10− 3 3.5 × 10− 3

30-OHA-3p 30 43 000 6.5 1 103 4.0 × 10− 2 9.8 × 10− 3

30-OHA-3n 30 43 000 6.5 1 − 103 2.5 × 10− 2 4.2 × 10− 4

30-OHA-4p 30 43 000 6.5 1 104 9.3 × 10− 3 1.2 × 10− 3

30-OHA-4n 30 43 000 6.5 1 − 104 5.1 × 10− 3 1.2 × 10− 5

30-OHA-5p 30 43 000 6.5 1 105 2.5 × 10− 3 7.4 × 10− 4

30-OHA-5n 30 43 000 6.5 1 − 105 1.3 × 10− 3 8.0 × 10− 5

100-HA-4p-Am10 100 ∞ 65 10 104 5.2 × 10− 2 2.3 × 10− 2

100-HA-4n-Am10 100 ∞ 65 10 − 104 3.7 × 10− 2 1.3 × 10− 2

100-HA-4p-Am1 100 ∞ 65 1 104 1.3 × 10− 2 9.0 × 10− 4

100-A-4p-Am1 100 ∞ ∞ 1 104 1.1 × 10− 2 4.7 × 10− 4

Figure 1. Representative ranges of Rm, RH, and Am at different radii in
the mid-plane of our model disc, which is ionized by cosmic rays at a rate
ζ cr = 10−17exp (−$/96 g cm−2) (Umebayashi & Nakano 1980) and which
contains dust grains (1 per cent by mass) of varying radii (0.3, 1, and 10 µm).
Other chemistry parameters (e.g. grain material density, recombination rates,
gas–grain collision rates) are taken from Kunz & Mouschovias (2009).

or the stellar wind blocking them altogether (Cleeves, Adams &
Bergin 2013; Cleeves et al. 2015). Thus, we emphasize that our
setup is just one model of many and that the cosmic ray flux used
here should be taken as an upper limit.

Away from the mid-plane, we adopt a simple approach to make
contact with previous numerical setups (e.g. Simon et al. 2013a,b)
in which FUV photons are assumed to strongly ionize a thin layer
above and below a diffusion-dominated mid-plane region. We set
the diffusivities to be such that the corresponding Elsasser numbers
(i.e. v2

A/%0η, where vA is the Alfvén speed and η is the correspond-
ing diffusivity) are initially constant (at their mid-plane values) for
columns greater than 0.01 g cm−2 and assume a very high ioniza-
tion fraction (10−5) elsewhere (following Perez-Becker & Chiang
2011). This ionization depth corresponds to ∼2H0 away from the
disc mid-plane at these radii. In a Courant-limited integration in

which diffusion is important, the time step is inversely proportional
to the diffusivity and thus computations can become prohibitively
expensive. In these regions of high ionization, the Hall and Ohmic
Elsasser numbers are ≫1, but ambipolar diffusion, whose associ-
ated Elsasser number is proportional to gas density, can still be quite
strong at large |z/H|. To minimize the effect of strong ambipolar
diffusion on reducing the time step, we cap ηA in these regions to
values 10%0H

2
0 . Lesur et al. (2014) examined the effect of changing

this cap on the simulations at 1 au and found no significant differ-
ences in their results; thus, we do not anticipate that the exact value
of this cap will strongly influence the results here. In the simulations
at 100 au, we do not include Ohmic resistivity at all, as it is expected
to be negligible in these regions.

Our simulations are conducted in units such that cs0 = %0 =
H0 = ρ0 = 1. For R0 = 1–10 au, the computational domain is
chosen to have size Lx × Ly × Lz = 4 × 8 × 12, resolved by Nx

× Ny × Nz = 64 × 64 × 192 cells. At radii larger than 10 au, the
domain size is Lx × Ly × Lz = 8 × 16 × 12 and is resolved by Nx

× Ny × Nz = 128 × 256 × 192 cells. All of our simulations are
listed in Table 1; following the convention of Lesur et al. (2014),
the runs are labelled by their radial location in our model disc, the
non-ideal MHD terms that are included, and by the strength and
orientation of the magnetic field. For example, the shearing box in
run 30-OHA-4n is placed at a disc radius R0 = 30 au, includes the
Ohmic, ambipolar, and Hall terms, and has β0 = −104; the ‘n’ in 4n
indicates that ! · B < 0 initially (as opposed to ‘p’ for ! · B > 0).
Two of our simulations used a mid-plane value of Am = 1 instead of
Am = 10 as calculated using the methods described above. These
runs are labelled with ‘Am1’ appended to the simulation name.
Finally, the simulations taken directly from Lesur et al. (2014) are
appended with ‘LKF’.

2.4 Diagnostics

We use several diagnostics to characterize the physics of accretion
in our shearing-box simulations. The first diagnostic is a volume

MNRAS 454, 1117–1131 (2015)
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Hall MRI 
Depends on field polarity

Nonideal MHD induction equation
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Dynamics depends on field polarity

[Wardle 1999, Balbus & Terquem 2001, Kunz 2008]



Hall MRI 
Depends on field polarity
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1122 J. B. Simon et al.

Figure 3. Space–time diagram of the horizontally averaged Maxwell stress, normalized by the initial, mid-plane gas pressure for the two runs shown in Fig. 2.
The top panel corresponds to 5-OHA-5p (5 au, β0 = 105) and the bottom panel corresponds to 5-OHA-5n (5 au, β0 = −105). The β0 < 0 case shows significant
temporal variations in the Maxwell stress that occur near the disc mid-plane. The β0 > 0 run shows a constant Maxwell stress in this same region.

does dominate over Ohmic dissipation, but used quasi-1D shear-
ing boxes with negligible horizontal dimensions. This suggests that
the turbulent activity we see in such a case requires either kx ̸=
0, ky ̸= 0 or both. We test the conjecture that the burst activity
requires non-axisymmetry (ky ̸= 0) by carrying out a test simula-
tion in which axisymmetry was enforced by setting Ny = 1 (run
5-OHA-5n-axi). This run showed no sign of bursty behaviour and
the mid-plane region remained relatively quiescent. It is also worth
noting that run 5-OHA-3n, which does not exhibit such highly vari-
able stress (for reasons that remain unclear), also does not exhibit
significant non-axisymmetric fluctuations. Follow-up work by Bai
(2015) did explore the case ! · B < 0 at both 5 and 10 au in full
non-axisymmetric 3D, but did not find the variability we see in
our corresponding simulations. While Bai (2015) used a different
chemistry calculation than the one employed here, resulting in the
enhancement of all three non-ideal effects, we suspect that the ab-
sence of bursts in that work is specifically due to the enhancement
of ambipolar diffusion, resulting in a relatively smaller value of Am
compared to our work. To test this hypothesis, we carried out an
identical simulation to 5-OHA-5n but with the magnitude of ηA

amplified by a factor of 10 everywhere; this run is labelled 5-OHA-

5n-diff in Table 1. We found no turbulent activity in the mid-plane
for this test simulation. While it is unsurprising that a decrease in
Am leads to less activity in the disc, it is important to point out
that the value of Am that we have used in our fiducial simulations
falls within the range of diffusion values based on our chemistry
calculations (see Fig. 1).

To summarize, we find that inner-disc regions of protoplanetary
discs in which a net vertical magnetic field is anti-aligned with the
rotation axis, the Hall effect dominates over magnetic induction
and the other non-ideal processes, and neutrals collide at least a few
times per orbit with free charges can support appreciable amounts
of highly variable turbulent transport. What makes this conclusion
all the more startling is that we find such disc regions to exhibit
larger α than they would if the Hall effect were otherwise absent
(see run 5-OA-5n in Table 1)! To aid in our interpretation of this
behaviour, we return to the linear theory.

3.1.2 Origin of the turbulent bursts

To provide some illumination on the observed bursty behaviour seen
in some of our simulations, we revisit the general linear analysis of

MNRAS 454, 1117–1131 (2015)
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⌦ ·B > 0

⌦ ·B < 0

Disc dynamics depends strongly on 
[Lesur+2014, Bai 2014, O’Keeffe+ 2014, Simon+2015]

“laminar” stress

turbulent bursts
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Hall effect 
can drive large scale structure formation

Despite being strongly unstable to the MRI, Hall dominated discs can 
spontaneously organise [Kunz & Lesur 2013, Bethune+2015 in prep] 

Very weak or no turbulence

[Bethune+2015 in prep]
Very weak Hall effect Strong Hall effect

3D turbulence Large scale vortices Large scale zonal flows 
“rings”
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Nonideal MHD effects

[Simon+ 2015]

1120 J. B. Simon et al.

Table 1. Shearing-box simulations.

Label Radius Rm RH Am β0 α αmid
(au)

1-OHA-5p-LKF 1 2.9 0.011 0.24 105 5.0 × 10− 2 3.5 × 10− 2

1-OHA-5n-LKF 1 2.9 0.011 0.24 − 105 3.9 × 10− 4 − 9.0 × 10− 7

1-OHA-3p-LKF 1 2.9 0.011 0.24 103 3.1 × 10− 1 2.2 × 10− 1

5-OHA-3n 5 1400 0.66 2.5 − 103 2.4 × 10− 2 2.2 × 10− 5

5-OHA-4n 5 1400 0.66 2.5 − 104 5.0 × 10− 3 8.4 × 10− 4

5-OHA-5p-LKF 5 1400 0.66 2.5 105 2.0 × 10− 2 2.1 × 10− 2

5-OHA-5n 5 1400 0.66 2.5 − 105 3.3 × 10− 3 2.3 × 10− 3

5-OHA-5n-diff 5 1400 0.66 0.25 − 105 6.3 × 10− 4 3.1 × 10− 7

5-OHA-5n-axi 5 1400 0.66 2.5 − 105 9.3 × 10− 4 7.9 × 10− 7

5-OA-5n 5 1400 ∞ 2.5 − 105 9.2 × 10− 4 1.0 × 10− 4

10-OHA-5p-LKF 10 10 000 1.8 3.2 105 1.0 × 10− 2 9.3 × 10− 3

10-OHA-5n 10 10 000 1.8 3.2 − 105 4.6 × 10− 3 3.5 × 10− 3

30-OHA-3p 30 43 000 6.5 1 103 4.0 × 10− 2 9.8 × 10− 3

30-OHA-3n 30 43 000 6.5 1 − 103 2.5 × 10− 2 4.2 × 10− 4

30-OHA-4p 30 43 000 6.5 1 104 9.3 × 10− 3 1.2 × 10− 3

30-OHA-4n 30 43 000 6.5 1 − 104 5.1 × 10− 3 1.2 × 10− 5

30-OHA-5p 30 43 000 6.5 1 105 2.5 × 10− 3 7.4 × 10− 4

30-OHA-5n 30 43 000 6.5 1 − 105 1.3 × 10− 3 8.0 × 10− 5

100-HA-4p-Am10 100 ∞ 65 10 104 5.2 × 10− 2 2.3 × 10− 2

100-HA-4n-Am10 100 ∞ 65 10 − 104 3.7 × 10− 2 1.3 × 10− 2

100-HA-4p-Am1 100 ∞ 65 1 104 1.3 × 10− 2 9.0 × 10− 4

100-A-4p-Am1 100 ∞ ∞ 1 104 1.1 × 10− 2 4.7 × 10− 4

Figure 1. Representative ranges of Rm, RH, and Am at different radii in
the mid-plane of our model disc, which is ionized by cosmic rays at a rate
ζ cr = 10−17exp (−$/96 g cm−2) (Umebayashi & Nakano 1980) and which
contains dust grains (1 per cent by mass) of varying radii (0.3, 1, and 10 µm).
Other chemistry parameters (e.g. grain material density, recombination rates,
gas–grain collision rates) are taken from Kunz & Mouschovias (2009).

or the stellar wind blocking them altogether (Cleeves, Adams &
Bergin 2013; Cleeves et al. 2015). Thus, we emphasize that our
setup is just one model of many and that the cosmic ray flux used
here should be taken as an upper limit.

Away from the mid-plane, we adopt a simple approach to make
contact with previous numerical setups (e.g. Simon et al. 2013a,b)
in which FUV photons are assumed to strongly ionize a thin layer
above and below a diffusion-dominated mid-plane region. We set
the diffusivities to be such that the corresponding Elsasser numbers
(i.e. v2

A/%0η, where vA is the Alfvén speed and η is the correspond-
ing diffusivity) are initially constant (at their mid-plane values) for
columns greater than 0.01 g cm−2 and assume a very high ioniza-
tion fraction (10−5) elsewhere (following Perez-Becker & Chiang
2011). This ionization depth corresponds to ∼2H0 away from the
disc mid-plane at these radii. In a Courant-limited integration in

which diffusion is important, the time step is inversely proportional
to the diffusivity and thus computations can become prohibitively
expensive. In these regions of high ionization, the Hall and Ohmic
Elsasser numbers are ≫1, but ambipolar diffusion, whose associ-
ated Elsasser number is proportional to gas density, can still be quite
strong at large |z/H|. To minimize the effect of strong ambipolar
diffusion on reducing the time step, we cap ηA in these regions to
values 10%0H

2
0 . Lesur et al. (2014) examined the effect of changing

this cap on the simulations at 1 au and found no significant differ-
ences in their results; thus, we do not anticipate that the exact value
of this cap will strongly influence the results here. In the simulations
at 100 au, we do not include Ohmic resistivity at all, as it is expected
to be negligible in these regions.

Our simulations are conducted in units such that cs0 = %0 =
H0 = ρ0 = 1. For R0 = 1–10 au, the computational domain is
chosen to have size Lx × Ly × Lz = 4 × 8 × 12, resolved by Nx

× Ny × Nz = 64 × 64 × 192 cells. At radii larger than 10 au, the
domain size is Lx × Ly × Lz = 8 × 16 × 12 and is resolved by Nx

× Ny × Nz = 128 × 256 × 192 cells. All of our simulations are
listed in Table 1; following the convention of Lesur et al. (2014),
the runs are labelled by their radial location in our model disc, the
non-ideal MHD terms that are included, and by the strength and
orientation of the magnetic field. For example, the shearing box in
run 30-OHA-4n is placed at a disc radius R0 = 30 au, includes the
Ohmic, ambipolar, and Hall terms, and has β0 = −104; the ‘n’ in 4n
indicates that ! · B < 0 initially (as opposed to ‘p’ for ! · B > 0).
Two of our simulations used a mid-plane value of Am = 1 instead of
Am = 10 as calculated using the methods described above. These
runs are labelled with ‘Am1’ appended to the simulation name.
Finally, the simulations taken directly from Lesur et al. (2014) are
appended with ‘LKF’.

2.4 Diagnostics

We use several diagnostics to characterize the physics of accretion
in our shearing-box simulations. The first diagnostic is a volume

MNRAS 454, 1117–1131 (2015)
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Ambipolar diffusion 
Stabilises the outer disc

[Simon+2014]

The outer disc is less sensitive to the Hall effect [Bai 2015, Simon+2015] 
Quenching of the midplane turbulence by ambipolar diffusion

The Astrophysical Journal, 775:73 (13pp), 2013 September 20 Simon et al.

Figure 5. Top row: time and horizontally averaged vertical profile for Maxwell stress (solid lines) and Reynolds stress (dashed lines) normalized by the initial mid-plane
gas pressure. Bottom row: time and horizontally averaged vertical profile for total Maxwell stress (solid lines) and the turbulent Maxwell stress (dashed line) calculated
by subtracting the largest scale stress −⟨Bx⟩⟨By⟩ from the total Maxwell stress. In all panels, the data correspond to the layered Am simulations with Σi = 0.1 g cm−2.
The left panel corresponds to the runs at 30 AU and the right panel corresponds to 100 AU. As in Figure 3, the color of the line represents the strength of the net
vertical magnetic field: the red line corresponds to β0 = 103, the black lines correspond to β0 = 104, and the blue lines correspond to β0 = 105. The shaded region
denotes where Am = 1. The Maxwell stress dominates over the Reynolds stress in almost all cases; the exception is within the Am = 1 region at 100 AU. There is a
spike in Reynolds stress at z = 0 for AD30AU1e3. The Maxwell stress has a non-negligible large-scale component, except for at z = 0 for AD30AU1e3 and within
∼2H of the mid-plane for all of the other runs.
(A color version of this figure is available in the online journal.)

The run AD30AU1e4L shows a stress profile very similar to
AD30AU1e3, though at a lower amplitude at all z. Furthermore,
there is more turbulence near the mid-plane in AD30AU1e4L;
within |z| ! 1.5H , the turbulent component to the Maxwell
stress is comparable to the total averaged stress.

Another useful diagnostic is the space–time diagram of the
horizontally averaged toroidal field, as shown in Figure 6 for the
three simulations at 30 AU with Σi = 0.1 g cm−2 and in Figure 7
for the β0 = 104 simulation at this radius with Σi = 0.01 g cm−2.
In all of these plots, the white lines denote the locations of the
FUV ionization front (i.e., where Am drops to unity).

From these figures, it is obvious that there is some activity
in the Am = 1 region. However, within this region, the field
appears to be reduced in amplitude, in agreement with the dip
in the time-averaged stress profiles. With the exception of the
top panel of Figure 6 and Figure 7, the familiar MRI dynamo
behavior (see, e.g., Simon et al. 2012) reemerges within the large
Am regions. This dynamo behavior manifests itself in the stress
curves of Figure 3 as oscillations; we verified that the frequency
of oscillation in these curves corresponds to the frequency
seen in the By dynamo pattern. This effect points to the strong
contribution of large-scale correlations in Bx and By to the total
Maxwell stress in the upper disk regions, as discussed above.

The runs AD30AU1e3 and AD30AU1e4L do not exhibit the
MRI dynamo oscillations. The toroidal field remains stationary
for the entire duration of the simulations, and changes sign
across the disk mid-plane, leaving a thin layer with strong
current. We will further examine this dichotomy in the next
section.

3.2. Quasi-laminar Flow versus Turbulence

As noted above, both runs AD30AU1e3 and AD30AU1e4L
show different magnetic field behaviors (both in space and time)
compared to the other simulations. The difference between these
two runs and the other simulations is further elucidated by
considering the structure of the magnetic field.

Figures 8 and 9 display volume renderings of magnetic field
lines at one point in the saturated state of runs AD30AU1e3 and
AD30AU1e4, respectively. AD30AU1e3 has a largely laminar
magnetic field structure, which is predominately toroidal. In the
poloidal plane (right panel of Figure 8), it is clear that a wind-
like structure is present. AD30AU1e4, on the other hand, has
a very turbulent magnetic field structure, while still being pre-
dominantly toroidal. This same turbulent structure is observed
in AD30AU1e5 and AD30AU1e5L, whereas the quasi-laminar
structure of AD30AU1e3 is also seen in AD30AU1e4L.

These results suggest that there are two classes of solutions
here: one in which the flow is largely laminar, the other of
which is turbulent. In the laminar cases, most of the Rφ stress
results not from small-scale turbulent fluctuations, but large-
scale correlations in Bx and By, as was shown in Figure 5.
In the turbulent cases, there is a non-negligible fraction of
the Maxwell stress in the FUV-ionized region resulting from
large-scale correlations in the radial and toroidal fields. In the
Am = 1 region, the significantly weaker Maxwell stress appears
to result from turbulence.

The reason for this dichotomy lies in the dependence of the
MRI on the magnetic field strength in the ambipolar diffusion

7



The role of the MRI in PPdiscs

For R>1AU, the MRI is strongly affected by nonideal effects 

    values are not sufficient to explain observed accretion rates (no turbulence) 

Large scale structures (rings & vortices) can appear spontaneously 

If Hall-dominated, the dynamics depends on the field polarity

15
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Questions to observers #2:
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Is the disc midplane turbulent ? (could be tested with dust settling ?) 

Do we observe structures (rings, vortices) in planet-free discs? 

Do we observe a dichotomy in PPD evolution (field polarity sensitivity) ?



Disc winds

17
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Disc winds 
Blandford & Payne paradigm

Need a large scale mean field 
Magneto-centrifugal ejection when i>30° 
Requires                        [Murphy+ (2010)]                   

Magnetic 
field

Accretion flow

Ejection

i

� ⌘ PTh

PMag
⇠ 1

[Blandford & Payne (1982)]



19

Surface winds in weakly magnetised discs � ⌘ PTh

PMag
= 103—105

~1AU

Dead zone �midplane = 103—105

�surface ⇠ 1

“Weak” field 
Bulk flow is decoupled from the field 
Only the disc “surface” (ionised by FUVs) feels the field. 
Blandford & Payne paradigm applied at the disc surface only [Bai+ 2013] 

B ' 0.8R�13/8
au

⇣�midplane

103
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Disc winds 
Mass loss rate issue

Ohmic+ambipolar diffusion

first bend from their starting configuration. We have tested this
by running reference models with different magnetic pressure
gradients. If ¶ >B 0R z , the initial condition has an unbalanced
inward pressure force, and we do indeed find the field lines to
spontaneously bend inward; this happens simultaneously in the
upper and lower hemisphere of the disk, such that the overall
symmetry that is obtained is again even. The launching of the
inward wind is restricted to the inner disk, probably because the
vertical field lines become too stiff (owing to Bz increasing with
radius) to be suitable for wind launching in the outer disk.

For a neutral situation with ¶ =B 0R z , we still observe
outward bending of the field lines. Starting from the inner
radial domain, the outward propagating establishment of the
wind region is found to stall at some radius, whereas the wind

was quickly established throughout the entire domain in model
OA-b5. As before (for the case of an outward magnetic
pressure gradient), this is probably related to the field lines
becoming too strong to support the wind launching mechanism
at large radii. The wind indeed stalls further out in a run with
weaker overall net-vertical field. This poses the question
whether the vertical profiles of L z( )O , and L z( )AD that we
obtain from our ionization model put strong constraints on
permissible vertical field amplitudes as a requirement for wind
launching.
A possible reason for the outward bending, even in the case

of neutral magnetic pressure forces, may be that the vertical
shear present in the global models (because of the baroclinic
conditions) naturally bends the azimuthal component of the
field in the correct direction required by the physical wind
solution. We have checked that the outward bending of the
vertical field lines is however equally seen in (strongly flaring)
globally isothermal models that do not have any vertical
gradients in the rotation velocity or any radial gradients in the
vertical magnetic field. The outward pointing configuration is
energetically favored because setting it up involves diluting
rather than concentrating magnetic flux.
Our simulations demonstrate in any case that global models

spontaneously develop the correct field geometry, although we
caution that this conclusion needs to be tested in future
simulations that moreover adopt improved boundary conditions
for the magnetic field at the upper and lower (and potentially
the inner radial) surfaces of the simulation domain. Ultimately,
the emergence of the wind geometry will have to be studied in
simulations that do not start from well-motivated (but never-
theless arbitrary) initial conditions, but do account for the
formation of the PPD from a collapsing molecular cloud (Li
et al. 2014).
Lastly, for the parameters that we have considered here, we

do not find a self-limiting of the wind via shielding of FUV
photons (Bans & Königl 2012). This is consistent with the
TTauri scenario of Panoglou et al. (2012), who performed disk
wind chemical modeling for various protostellar evolution
stages. The authors find the shielding of FUV photons to be
important for the Class I and Class 0 cases. Their T Tauri case,
with mass flow rates comparable to our fiducial model, is
sufficiently FUV-ionized to reduce AD enough so that the
neutrals are swept up in the wind out to at least a radius of
9 AU.

3.4.2. Comparison with Local Models

Except for the reversal of the horizontal magnetic field
components (which at this stage appears to occur rather gently
instead of within a narrow current layer), the field structure
observed in the upper panel of Figure 5 is similar to that
described by BS13 and shown in their Figure 10. Near the
midplane, where the dominance of the Ohmic resistivity retards
the growth of currents, the field is dominated by the vertical
component. Moving to higher altitudes, where the magnetic
coupling increases, the field bends outwards because a radial
velocity is generated through the azimuthal force balance
between the Coriolis force and magnetic tension. We enter the
FUV layer at disk altitudes ∣ ∣ 2z H4.5 , coinciding with the
base of the wind and the wind itself, as illustrated by the
velocity vectors.
At later times, the lower panel of Figure 5 shows that the

varying polarity of the strong azimuthal field belts gives rise to

Figure 5. Field topology of our fiducial simulation at different evolution times.
The azimuthal magnetic field (color) has been restricted to values

<f∣ ∣B 125 mG for clarity; peak values are a few hundred mG. We also show
projected magnetic field lines (white) and velocity vectors (black). Additional
lines indicate the position, zb, of the wind base (dot–dash), and the radial
location of the profiles plotted in Figures 6 and 7 (dashed lines).
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[Gressel+2015]

Ṁwind ' 10�8 M�/yr

Ṁacc ' 10�9 M�/yr

Ṁwind > Ṁacc                         is energetically impossible ! 
Mass loss rates are generally overestimated (vertical boundary artefact)  
[Suzuki+ (2010) ; Bai+ (2013) ; Lesur+ (2013) ; Fromang+ (2013)]



Questions to observers #3:
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Do we observe winds in the outer part of PPDs that could be explained by 
magnetic acceleration? How strong are these winds? 

Can we put constraints on magnetic field strength & topology in PPDs?



Hydrodynamic instabilities

22

is there something alive in dead zones?



Driven by the radial entropy gradient [Klahr & Bodenheimer (2003)] 

          

Requires fast cooling  [Petersen+ (2007) ; Lesur & Papaloizou (2010)] 

Leads to                              

Baroclinic instability (=radial convection)

↵ ⇠ 10�3—10�2

The Astrophysical Journal, 765:115 (12pp), 2013 March 10 Raettig, Lyra, & Klahr

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

ω
z2 τcool=10, τdiff=10

τcool=10,τdiff=10
τcool=30, τdiff=10
τcool=30, τdiff=30
τcool=100, τdiff=10
τcool=100, τdiff=30
τcool=100, τdiff=100

0.00

0.05

0.10

0.15

0.20

0.25

ρ r
m

s

τcool=10, τdiff=10
τcool=10,τdiff=10
τcool=30, τdiff=10
τcool=30, τdiff=30
τcool=100, τdiff=10
τcool=100, τdiff=30
τcool=100, τdiff=100

0.000 0.005 0.010 0.015
α

0.0

0.1

0.2

0.3

0.4

u rm
s [

c s] τcool=10, τdiff=10
τcool=10,τdiff=10
τcool=30, τdiff=10
τcool=30, τdiff=30
τcool=100, τdiff=10
τcool=100, τdiff=30
τcool=100, τdiff=100

Figure 9. Saturation values of ω2
z , ρrms and urms as a function of saturated (value

at the end of the simulation for β = 0.5) α-value and all our runs with the small
physical domain (runs A–P). The symbols show the different combinations of
τcool (left numbers) and τdiff (right numbers). Where red are runs with black
β = 2.0, β = 1.0 and green β = 0.5. The black dashed line shows the
dependency that we fit.
(A color version of this figure is available in the online journal.)
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Figure 10. Saturation values of α for all our runs with the smaller box depending
on β. Runs with parentheses around them were not saturated at the end of the
simulations. Therefore we do not take them into account when we fit the α–β
relation. The symbols show the different combinations of τcool (symbols) and
τdiff (colors).
(A color version of this figure is available in the online journal.)

Our simulations were conducted partly on the MPIA cluster
THEO in Garching, and on the JUGENE machine of the JSC
using the grand HHD19. This work was partially supported
by the National Institute for Computational Sciences (NICS)
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Figure 11. Comparison of the kinetic energy for isothermal and adiabatic
setup with the TRAMP code and the Pencil Code. Both codes show the
identical behavior for the isothermal case (dashed and dotted lines), yet in
the adiabatic case the TRAMP code shows an artificial amplification of kinetic
energy (dashed-dotted line). The Pencil Code does not show this behavior.

under TG-MCA99S024 and utilized the NICS Kraken system.
This collaboration was made possible through the support of
the Annette Kade Graduate Student Fellowship Program at
the American Museum of Natural History. N.R. also thanks
IMPRS-HD.

APPENDIX

NUMERICAL ARTEFACTS

Shearing sheet simulations with the TRAMP code have
displayed unreliable behavior for the extreme cases of cooling
times, either isothermal (τcool = 0) or adiabatic (τcool = ∞). In
the first case, a global pressure gradient in a locally isothermal
disk leads to the amplification of radially propagating sound
waves, which is a physically realistic case (Klahr 2013, private
communication), but only shows up in local radially periodic
simulations because the sound wave can propagate through
the box for an unlimited amount of time, which of course
is not possible in a global disk. This physical instability can
thus be found both in 1D radial TRAMP as well as in Pencil
Code simulations with remarkably identical growth behavior.
This means that having a too short cooling time artifacts from
these radially propagating sound waves could ruin our models.
Nevertheless, a cooling time of τcool = 0.01 will suppress these
sound wave instability completely.

On the other hand, the adiabatic simulations using the
TRAMP code were showing a weak amplification of kinetic
energy over very long timescales which is the accumulation of
numerical error in the quasi dissipation free TRAMP scheme.
This behavior is independent of the chosen entropy gradient and
results from the conservative treatment of Coriolis forces. Again
the Pencil Code with its explicit dissipation does not allow for
this accumulation of this numerical error, even in the presence of
a radial entropy gradient (see the solid and dashed-dotted lines in
Figure 11).
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kinetic energy grow due to the baroclinic term (Fig. 5). After
about five orbital periods, anticyclonic vortices begin to form,
and by 10 orbital periods, the domain is populated by numerous
small anticyclones. Cyclonic (anticyclonic) fluid rotates in the
same (opposite) direction as the background fluid and is denoted
by positive (negative) vorticity perturbation in the figures. It is
well known that anticyclones can be long lived in a Keplerian
disk, while cyclones shear out into thin filaments that eventually
dissipate away (Godon& Livio 1999; Marcus 1990; Marcus et al.
2000). An anticyclonic vortex has a positive azimuthal velocity at
small inner radii and a negative azimuthal velocity at large outer
radii. This means that anticyclonic vortices can smoothly match
the background shear flow and therefore extract energy from the
Keplerian shear. Cyclonic vortices cannot smoothly match the
background shear flow and are therefore sheared apart.

After the initial period of vortex formation, the vortices merge
and grow in strength (Figs. 3 and 4). This merging behavior is

similar to the merging of like-signed vortices in two-dimensional
isotropic turbulence, which transfers energy from smaller to larger
scales (the inverse cascade). However, in shearing flows vortices
do not merge as readily and must be sufficiently close in the radial
direction. It is not at all clear that this merging of vortices can
occur in a fully three-dimensional disk if the initial radial vortex
scale is small compared to the disk scale height. On the other hand,
if vortices primarily form on the upper and lower surfaces of a
vertical stratified disk, as found by Barranco & Marcus (2005),
then it may be possible for small-scale vortices to merge in these
surface layers. Further discussion and images of vortex merger,
longevity, and distribution can be found in Godon & Livio
(1999) and Umurhan & Regev (2004).

There is a clear ‘‘sandwich’’ pattern of temperature perturba-
tions around each vortex (Fig. 4); the vortex advects warmer fluid
toward the outside of the disk and cooler fluid toward the inside of
the disk. In the sandwich analogy, the temperature perturbations are

Fig. 2.—Perturbation vorticity ! 0 in the quarter-annular computational domain for simulation A1. The time t refers to the orbital period in the middle of the annulus. At
very early time (left), the vorticity is simply sheared by the background differential rotation. By five orbital periods (middle), a few anticyclonic vortices begin to fold over,
and by 10 orbital periods (right), numerous small anticyclonic vortices have formed. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 3.—Perturbation vorticity ! 0 (top row) and perturbation temperature T 0 (bottom row) for simulation A1, where the radiative cooling time is fast (" ¼ 1). In this
regime, the baroclinic feedback remains strong, and vortices remain strong for the full simulation. [See the electronic edition of the Journal for a color version of this figure.]

BAROCLINIC VORTICITY PRODUCTION. II. 1255No. 2, 2007

Petersen+ (2007), ApJ, 658, 1252
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Vertical shear instability (VSI)

appears in baroclinic discs:  
Relies on fast cooling function to sustain vertical shear (thermal wind equation) 
Most effective for 5 AU < R < 50 AU [Lin & Youdin 2015] 
Give                   

Nelson+ (2013)
24

R

Z

↵ . 10�322 A. J. Barker and H. N. Latter

Figure 1. Basic state for the locally isothermal disc with q = −1, p = −1.5 and c0 = 0.05. The left-hand panel shows a contour plot of ! on the (R, z) plane.
The middle panel is a similar contour plot, but this shows the magnitude of the vertical shear ∂z(R!), which has a maximum at |z| ∼ 1 (whereas the scaleheight
at the inner radial boundary is 0.05). The right-hand panel shows the density ρ.

particularly important issue when trying to connect the linear theory
to global simulations, and in interpreting their non-linear outcome.
Our paper is devoted to exploring this aspect of the problem.

We perform linear stability analyses of astrophysical discs ex-
hibiting global variations in temperature and entropy, and as a con-
sequence vertical shear. We employ locally isothermal and poly-
tropic models in both quasi-global and fully global 2D geometries,
which revise and extend previous work.

In agreement with Nelson et al. (2013), we find that the VSI
excites two classes of modes. The first class corresponds to classical
free inertial waves (r modes) that are present in any astrophysical
disc (Lubow & Pringle 1993; Korycansky & Pringle 1995; Kato
2001) but which have been destabilized by the vertical shear. These,
referred to as ‘body modes’, grow at modest rates and typically
exhibit longer wavelengths (though the radial wavelength of the
waves is still short).

The second class corresponds to modes localized to the verti-
cal surfaces of the disc where the vertical shear is maximal. These
grow much faster and have very short wavelengths, making them
difficult to resolve numerically. In fact, unless viscosity is included,
the fastest growing modes possess arbitrarily small wavelengths,
making their simulation problematic. Note that, though they have
been termed ‘surface modes’, these are different to the classical
surface gravity waves that appear in polytropic disc models, as they
lie in a different frequency range; they are hence a form of local-
ized low-frequency inertial wave. Strict isothermal models do not
possess a physical vertical surface and hence do not support these
surface modes. Polytropic disc models do, however, as should any
realistic disc model that possesses a transition between an optically
thick interior and an optically thin ‘corona’.

We begin by explaining why a radial variation in entropy or
temperature generally leads to vertical shear in Section 2. There we
also explain why such discs are likely to be unstable. After defining
our basic disc models in Section 3, we analyse the resulting VSI
in the locally isothermal disc in Sections 4 and 6 and the locally
polytropic disc in Section 5. Finally, we will discuss the implications
of our results in Section 7, where we also speculate on the non-
linear evolution of the VSI and its efficiency at transporting angular
momentum.

2 V ERTICAL-SHEAR INSTABILITY

Discs with radial variations in temperature or entropy necessarily
possess vertical shear. To see that this must be, consider the ‘thermal

wind equation’ (the azimuthal component of the vorticity equation
for the axisymmetric basic state of the disc):

∂z(R!2) = −eφ · (∇ρ × ∇P ) /ρ2 (1)

= ∂RT ∂zS − ∂zT ∂RS. (2)

Here we have adopted cylindrical polar coordinates centred on the
central object (R, φ, z) and ρ, P, S and T are the basic state density,
pressure, specific entropy and temperature profiles, respectively.
Equation (1) tells us that a radial variation in the background tem-
perature or entropy generates a departure from cylindrical rotation
through the baroclinic terms on the right-hand side. Thus the an-
gular velocity ! = !(R, z), and consequently the disc exhibits a
weak vertical shear. For illustration, we show the angular velocity
and vertical shear for a disc with a radial variation in temperature
in Fig. 1, and the vertical shear for a disc with a radial variation in
entropy in Fig. 2 (both disc models and the notation adopted are
defined in Section 3).

2.1 Physical picture

Vertical shear provides a source of free energy that can drive hydro-
dynamic instabilities. How might modes access this free energy?
Consider a ring of fluid at a given location (A) within the disc
with coordinates (RA, zA), and hence specific angular momentum
hA = R2

A!(RA, zA). If we vertically displace this ring to a new po-
sition (B) with coordinates (RA, zA + $z), then its specific angular
momentum will be conserved as long as viscosity can be neglected
(i.e. we assume that |$z| is much larger than the viscous length).
But if the angular momentum of fluid at the new location hB is
smaller (larger) than hA, then the ring will be pushed outwards
(inwards) by the centrifugal acceleration (h2

A − h2
B)/R3

A, leading to
a dynamical instability. Given that h2

B ≈ h2
A + $z∂zh

2, instability
occurs whenever ∂zh

2 < 0 (or indeed >0), i.e. if there is any vertical
shear. Basically, this interchange of rings of fluid reduces the total
energy of the configuration, leading to an instability that transports
angular momentum in order to eliminate the vertical shear.1 This

1 Our illustrative perturbation is vertical for simplicity; any displacement
lying within the angle between the rotation axis and a surface of constant
angular momentum will do (as explained in Knobloch & Spruit 1982, for
example).
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Rotation profile in a locally 
isothermal disc [Barker & Latter 2015]

[Urpin & Brandenburg (1998), Urpin (2003) ; 
Nelson+ (2013) ; Barker & Latter (2015)]



Interaction with an external enveloppe

25

A falling enveloppe might be sufficient to drive accretion 
through spiral waves transport [Lesur+ 2015]
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Conclusions & perspectives
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Dead zones are the current bottleneck in disc modelling 

MHD-driven turbulence is insufficient to explain accretion rates 

No reliable theoretical constraint on winds due to numerical limitations 

Hydro processes are still largely speculative (thermodynamics, inflows?) 

But some interesting developments 

Prediction of magnetically driven surface winds in the outer disc 

Sensitivity to the field polarity in Hall dominated regions 

Spontaneous formation of rings and vortices is possible 

~1AU ~30AU

MRI

 surface magneto-centrifugally  
driven wind ? 

Ohmic 
diffusion Hall effect+ 

Ambipolar diffusion Ambipolar diffusion

jet basis?

Magnetically dead zone  
Hydrodynamically active? 

Self organisation? (rings, vortices)

wave transport? 
self gravity?

Inflows?



List of questions to observers
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~1AU ~30AU

MRI

 surface magneto-centrifugally  
driven wind ? 

Ohmic 
diffusion Hall effect+ 

Ambipolar diffusion Ambipolar diffusion

jet basis?

Magnetically dead zone  
Hydrodynamically active? 

Self organisation? (rings, vortices)

wave transport? 
self gravity?

Inflows?

Can we get observational constrains on the ionisation fraction in protoplanetary discs ? 

Is the disc midplane turbulent ? (could be tested with dust settling ?) 

Do we observe structures (rings, vortices) in planet-free discs? 

Do we observe a dichotomy in PPD evolution (field polarity sensitivity) ? 

Do we observe winds in the outer part of PPDs that could be explained by magnetic 
acceleration? How strong are these winds? 

Can we put constraints on magnetic field strength & topology in PPDs? 


