Time dependent magnetically controlled accretion in YSOs

James Owen (IAS, Hubble Fellow) Connor Robinson (Boston University) Cathrine Espaillat (Boston University) Fred Adams (University of Michigan)

Motivation

- Observations of YSOs indicate that they have strong magnetic fields.
- Accreting material is funneled onto the star in columns, where the magnetic topology controls there shape.

Topology Matters

- Simple steady-state solutions can give flow profile
- Higher order field components, give rise to smaller accretion funnels near star.
- Higher divergence near star gives higher density.
- Different topologies might give rise to different observational signatures for same accretion rate.

Field Topology

 Observations of field structure of young stars shows evidence for strong octuple component in SOME CASES (e.g. Donati et al. 2008, Donati et al. 2011).

Observations of Variability

 Multiple observations of same objects show evidence for variable accretion with factor of > 2 variability.

Timescales: sources of fast variability

Modelling Solutions

Time dependent flow models that follow the field lines

- Work in the strong field limit (the flow doesn't change the field topology).
- Pick a field line that connects disc and star and solve time-dependent problem along field line, with rotation, using a ZEUS like scheme, with full tensor artificial viscosity.
- Steady-state solutions found by Koldoba et al. (2002) dipole. Adams & Gregory (2012) - generic field.

Time dependent flow models that follow the field lines

- Stellar Surface, where density is drained to stellar value on fixed time-scale.
 P(t), T(t)
 Encode information about the topology of the field lines in the geometric code factors were and
 - lines in the geometric scale factors (c.f. Adams 2011, Adams & Gregory 2012, Owen & Adams submm.)
 - Use polytropic equation of State $P=K\rho^{(1+1/n)}$

Isothermal Dipole Test

Octupole versus Dipole

Octuple Ratio=5

Dipole

Robinson et al. (in prep)

Driven Variability

Driven Variability (2)

Octuple Ratio=5

Dipole

Robinson et al. (in prep)

Driven Variability (3)

Flow Sinusoidally driven at disc with amplitude of 2

Robinson et al. (in prep)

Conclusions

- Accretion is observed to be time-dependent and magnetically controlled.
- We can use simple time-dependent models to study the flow along the accretion funnel. Results depend on field geometry and thermodynamics. A new tool to study variable accretion.
- Plan to use this tool to study and characterise variability across parameter space. Then compare to observations.
- Getting new accretion rate data on a variety of cadences using the Discovery Channel Telescope.