

author: Eduard Vorobyov

affiliation: Department of Astrophysics, University of Vienna, Vienna, Austria and Research Institute of Physics, Southern Federal University, Rostov-on-Don, Russia

Co-authors: Shantanu Basu

OUTLINE

- 1. Failure of the classic spherical accretion models
- 2. Episodic accretion bursts in the disk fragmentation model
 - Accretion variability in gravitationally unstable disks

Failure of the classic spherical collapse model

Mass accretion rate onto the star in the standard model of spherical collapse (Shu 1977)

$$M_{Shu} \approx \frac{C_s^3}{G} \approx (1-4) \times 10^{-6}$$
 M₀ yr⁻¹, for T = 10 – 20 K

Histogram presents inferred accretion rates in young embedded sources

(Perseus, Serpens, and Ophiuchus Enoch et al. 2009)

55% -
$$M < 10^{-6}$$
 M₀ yr⁻¹
5% - $M > 10^{-5}$ M₀ yr⁻¹

Key features of young star-forming regions – wide spread in accretion rates (~ 3 orders of magnitude).

Stars do NOT accrete at a rate predicted by simple spherical collapse models.

Variable accretion with episodic bursts

Infalling material from a collapsing core accumulates in a protostellar disk and is driven onto a protostar in a series of short-lived (<100-200 yr) accretion bursts. The quiescent periods between the bursts (10³-10⁴ yr) are characterized by low-rate accretion.

FU Orionis is a prototype example

Before 1937 – was 16^{th} mag star, but increased by over 6 mag (factor of ~ 250 in luminosity) in one year. Currently flickering around 9.5 mag

How significant are the bursts?

FUors are **rarely** seen... but they are **common** events!

Within 1 kpc of the Sun:

- 8 FUors since 1936 → Fuors frequency is 0.1 yr⁻¹
- Average star formation rate 0.02 yr⁻¹ (Miller & Scalo 1979, ApJS, 41, 513)
- FUors occur at several times the rate of star formation; averaging multiple bursts per star

Mechanisms responsible for episodic bursts

Several mechanisms that can produce episodic bursts include:

- viscous-thermal instabilities in the inner disk (Lin & Papaloizou 1986),
- thermal instabilities induced by density perturbations due to a massive planet in the disk (Lodato & Clarke 2004),
- tidal effects from close encounters in binary systems or stellar clusters (Bonnell & Bastien1992; Reipurth & Asprin 2004; Pfalzner et al. 2008).
- combination of gravitational instability and the triggering of the magnetorotational instability (Armitage et al. 2001; Zhu et al. 2010)
- accretion of dense gaseous clumps in a gravitationally unstable disk (Vorobyov & Basu 2006, 2010, 2015; Machida et al. 2011)

Long-term evolution of self-gravitating circumstellar disks

Key result: evolution of protostellar disks depends crucially on the initial mass and angular momentum of parental pre-stellar cores. There is little dependence on the core shape (Vorobyov & Basu 2015, ApJ, 805, 115)

Initial core mass function in the Aquila region (Andre et al. 2010)

Depending on the distribution of beta-parameter, about 40-70% of cores are likely to produce fragmenting disks!

Migration of fragments onto the protostar and the burst mode of accretion

Initial core mass = 1.0 M_{sun} β = 0.8%

Face-on view of the disk
Black regions – infalling envelope
(off scale)

Mass accretion rate at 5 AU 10^{-5} M₁ / year

Vorobyov & Basu (2006, 2010)

Isolated vs. clustered bursts – zooming in onto individual bursts

Tidal disruption of a fragment on approach to the star

Fragments can be tidally disrupted when approaching the star, giving rise to a series of closely packed bursts

Fragments that withstand the disruptive influence of tidal torques produce isolated bursts

Properties of the bursts in the disk fragmentation model (Vorobyov & Basu 2015)

Model	$N_{ m bst}$	$M_{ m bst}^{ m tot}$	$t_{ m bst}^{ m tot}$	$L_{\rm max}/L_{\rm min}/L_{\rm mean}$	$\dot{M}_{ m max}/\dot{M}_{ m min}/\dot{M}_{ m mean}$	$t_{ m bst}^{ m max}/t_{ m bst}^{ m min}/t_{ m bst}^{ m mean}$	$t_{ m qst}^{ m max}/t_{ m qst}^{ m min}/t_{ m qst}^{ m mean}$
		(%)	(%)	(L_{\odot})	$(10^{-4} M_{\odot} \text{ yr}^{-1})$	(yr)	$(10^4 { m yr})$
					4-mag cutoff		
1	10	3.8	0.035	357/87/208	2.4/0.78/1.4	48/12/25	10/1.6/4.7
2	13	18.6	0.06	3042/77/846	20/0.8/5.3	78/10/36	15/0.36/4.4
5	3	1.3	0.02	620/403/500	1.2/0.92/1.0	82/18/41	_
7	3	2.0	0.04	227/115/157	2.6/0.9/1.5	64/36/47	_
					FUors		
					(observations)		
	26	_	_	525/10/200	10/0.01/1.9	80/4/20	_

Isolated bursts:

Total number per system – 3-13

(about 5-10)

Burst duration – [10 – 80] yr

(4 - 80 yr)

Duration of quiescent phase – [3.6*10³ -1.5*10⁵] yr

Accretion rate $-[8*10^{-5} - 2*10^{-3}]$ M₁ yr⁻¹

 $(10^{-6} - 10^{-3} \text{ M}_{\odot} \text{ yr}^{-1})$

Clustered bursts:

Duration between the bursts – a few hundred years

Number of bursts - a few

Non-linear interaction between time-varying spiral modes produces highly variable transport rates?

GFA can be regarded as a measure of non-axisymmetric density perturbations

 $C_2 = 0.1$ means that the amplitude of a two-armed spiral relative to the underlying axysimmetric disk is 10%

$$\Delta M = \log \frac{|M(t + \Delta t) - M(t)|}{\min[M(t + \Delta t), M(t)]}$$

Relative amplitude in mass transport rate at 4 AU

Can variability at AU scales influence / feed stellar variability?

- 1) Relative amplitude increases with increasing time sampling Δt
- 2) Significant spread around the peak value (several orders of magnitude)

Key conclusions

- Inward migration of clumps in gravitationally unstable disks produce luminosity outbursts with properties similar to FUors.
- Clump-triggered bursts have a wide range in properties, featuring isolated and clustered events with burst durations from 10 to 80 yr and quiescent periods from a few 100 yr to 10⁵ yr.
- Mass transport rates at a few AU are intrinsically variable. Relative amplitude increases with increasing time sampling.

Open questions:

- How does variable accretion affect the jets/outflows (knots)?
- How variability at several AU is linked to stellar variability?

3D view on the burst phenomenon

Variable accretion with episodic bursts. A new paradigm?

Gravitational fragmentation and inward migration of fragments onto the protostar (Vorobyov & Basu 2005, ApJL; Vorobyov & Basu 2006, 2010, ApJ)

Gravitational fragmentation of protostellar disks

Stamatellos & Whitworth (2009 MNRAS)

Various numerical and theoretical studies¹ of protostellar disks have shown that under favorable initial configurations and in the absence of magnetic fields, disk fragmentation is a robust phenomenon.

Prerequisites for disk fragmentation:

- relatively massive disks (> 10% that of the star)
- sufficiently large size (> 50 AU)
- sufficiently fast disk cooling ($\Omega * t_{cool} < 3 5$)

Major question: fragments can form in the disk, but can they survive?

References: Stamatellos, Whitworth, Kroupa, Inutsuka, Gammie, Bate, Boss, Machida, Zhu, Durisen, Nayakshin, Mayer, Wadsley, Kratter, Krumholz, Klein, Hayfield, Lodato, Clarke, Goodwin, Thies, Vorobyov, Basu and many others)

Model of an accreting protostar and protostellar disk

Accretion and infall rates in models with different core masses

How significant are the bursts?

FUors are **rarely** seen... but they are **common** events!

Within 1 kpc of the Sun:

- 8 FUors since 1936 → Fuors frequency is 0.1 yr⁻¹
- Average star formation rate 0.02 yr⁻¹ (Miller &Scalo 1979, ApJS, 41, 513)
- FUors occur at several times the rate of star formation; implying multiple bursts per star

Properties of the bursts

Base luminosity – photospheric luminosity plus accretion luminosity with dot{M} $\leq 10^{-6}$ M₁ yr⁻¹

Core mass	N _{burst} (4 mag cutoff)	Accreted mass (relative to total mass)	Time spent in bursts (relative to total time)	N _{burst} (3 mag cutoff)	Accreted mass (relative to total mass)	Time spent in bursts (relative to total time)
0.3 Msun	0	0	0	2	0.8%	0.026%
1.1 Msun	5	2.4%	0.016%	17	7.4%	0.12%

The effect of magnetic field

Ideal MHD plus a toy model for magnetic braking

$$\dot{L}_{\mathrm{mb}} = \frac{\Sigma r^2 \left(\Omega(r) - \Omega_{\mathrm{c}}(r)\right)}{t_{\mathrm{mb}}},$$

The rate of loss of angular momentum via magnetic braking

$$t_{
m mb} = rac{R_{
m c}}{v_{
m A}},$$

Characteristic time of magnetic braking

Implications of variable accretion

Baraffe et al. 2009, 2012; Baraffe & Chabrier 2010; Vorobyov et al. 2013, Stamatellos et al. 2012; Dunham & Vorobyov 2012; Km et al. 2012

