MHD modeling of accretion impacts in CTTS: Observability and diagnostics in UV and X-ray bands

R. Bonito^{1,2}, S. Orlando², C. Argiroffi^{1,2}, M. Miceli^{1,2} ¹ Dip. Di Fisica e Chimica, University of Palermo ² INAF - Osservatorio Astronomico di Palermo

Costanza Argiroffi, argi@astropa.unipa.it

ACCRETION SCHOCK IN CTTS

STUDYING SHOCK REGION ALLOWS TO:

- Test the physical condition of the accretion stream (velocity, density, chemical composition)
- Test the geometry of the system.

OPEN ISSUES:

- Local absorption.
- UV and X-ray line luminosities.
- UV and X-ray line profiles.
- Contributions to UV lines from preand post-shock.

MHD SIMULATIONS + SPECTRAL SYNTHESIS

Costanza Argiroffi, argi@astropa.unipa.it

MODELING

• Stream radius = 10¹⁰ cm

Costanza Argiroffi, argi@astropa.unipa.it

SPECTRAL SYNTHESIS

t = 2500 s

We computed UV and X-ray spectra considering:

- Local absorption
- Doppler shift
- Different viewing angle $\boldsymbol{\alpha}$

We compared them with observations, focusing on:

- Line/band luminosity
- Line profile

X-RAY vs UV LUMINOSITY: THE ROLE OF LOCAL ABSORPTION

- Different wavelengths monitor different portions of the stream.
- A significant fracion of UV and X-ray emission is absorbed locally →possible pre-shock heating (Costa et al. in preparation).

Costanza Argiroffi, argi@astropa.unipa.it

LINE LUMINOSITY: OBSERVED AND PREDICTED

1. UV and X-ray lines are emitted by post-shocks of different streams at different velocities.

- The accretion stream is different from that considered (a time-variable density could increse the UV to X relative emission, Colombo et al. in preparation);
- **3.** the pre-shock significantly contributes to the UV lines.

Costanza Argiroffi, argi@astropa.unipa.it

Costanza Argiroffi, argi@astropa.unipa.it

SIMULATED PROFILE OF THE OVIII DOUBLET AT 18.97 Å

Spectral resolution: X-rays \approx 85 km s⁻¹, UV \approx 15 km s⁻¹.

- We simulated a Chandra/HETG X-ray spectrum, with a S/N ratio similar to the TW Hya one.
- We fitted line position to check whether the Doppler shift is detectable.

Costanza Argiroffi, argi@astropa.unipa.it

OBSERVED PROFILE OF THE OVIII DOUBLET AT 18.97 Å

Costanza Argiroffi, argi@astropa.unipa.it

CONCLUSIONS

ABSORPTION:

Importance of local absorption \rightarrow heating of the pre-shock.

LINE LUMINOSITIES:

Reconcile UV and X-ray line luminosity (UV emission from both preand post-shock, several streams, density variations).

LINE PROFILES:

- Predicted CIV line profile from the post-shock shows a vast range of velocity.
- X-ray: OVIII line Doppler shift → detectable, and detected! → position of the base of the accretion stream.
- OVIII and CIV NC: same velocity → both lines likely originate in the same post-shock region.