

Gas dynamics driven by a massive YSO – from 0.1pc down to 100AU –

P.I.: Alberto Sanna

Co-ls:

- L. Moscadelli & R. Cesaroni (INAF, Florence); Q. Zhang (CfA);
- C. Goddi (Leiden Obs.); A. Caratti o Garatti (DIAS); G. Surcis (JIVE);
- J. De Buizer (SOFIA-USRA); K.M. Menten (MPIfR).

SFR G023.01-00.41

SPITZER/HERSCHEL view 1. — r>1pc

Alberto Sanna

OUTFLOW TRACERS: ¹²CO(2-1)

<u>SMA view</u> 1. — 0.1 $pc \leq r \leq 1pc$

Alberto Sanna

OUTFLOW TRACERS: SiO(5-4)

SMA view 2. — $0.1 \text{ pc} \leq r \leq 1 \text{ pc}$

Table 5. – Sanna et al. (2014), A&A, 565, A34									
Tracer	Lobe	R (pc)	$t_{\rm dyn}$ (yr)	$M_{\rm out}$ (M_{\odot})	$\dot{M}_{\rm out}$ $(M_{\odot} { m yr}^{-1})$	$p (M_{\odot} \text{ km s}^{-1})$	\dot{p} ($M_{\odot} \mathrm{km} \mathrm{s}^{-1} \mathrm{yr}^{-1}$)	$\frac{E_{\rm mec}}{(10^{46} {\rm ~erg})}$	$L_{ m mec}$ (L_{\odot})
¹² CO	Red-A	0.51	3.4×10^{4}	2.5	0.8×10^{-4}	37.5	1.1×10^{-3}	0.6	1.4
	Blue-A	0.44	2.9×10^{4}	1.4	0.5×10^{-4}	20.5	0.7×10^{-3}	0.3	0.9
SiO	Red-A	0.13	5.5×10^{3}	1.0	1.8×10^{-4}	23.1	4.2×10^{-3}	0.5	7.9
	Blue-A	0.12	5.1×10^{3}	0.6	1.3×10^{-4}	14.9	2.9×10^{-3}	0.3	5.5
		$R \times \frac{1}{\cos 30^\circ}$	$t_{\rm dyn} \times \tan 30^\circ$	Mout	$\dot{M}_{\rm out} \times \cot 30^{\circ}$	$p imes rac{1}{\sin 30^\circ}$	$\dot{p} \times \frac{\cos 30^{\circ}}{\sin^2 30^{\circ}}$	$E_{\rm mec} imes rac{1}{\sin^2 30^\circ}$	$L_{\rm mec} imes rac{\cot 30^\circ}{\sin^2 30^\circ}$
¹² CO		0.55	1.8×10^{4}	4.0	2.2×10^{-4}	116	6.2×10^{-3}	3.6	16
SiO		0.14	3.1×10^{3}	1.6	5.4×10^{-4}	76	2.4×10^{-2}	3.2	92

Alberto Sanna

ESTEC, Noordwijk (NL) — October, 27th-29th

HOT MOLECULAR CORE EMISSION: CH₃CN

Sanna et al. (2014), A&A, 565, A34

CH₃CN *p*-*v* ANALYSIS

SMA view 2. — $r \leq 0.04 \text{ pc}$

Alberto Sanna

ESTEC, Noordwijk (NL) - October, 27th-29th

DOWN TO *1 mas* RESOLUTION

VLBI vs. SMA view

Sanna et al. (2010), A&A, 517, 78

Alberto Sanna

THE OUTFLOW/DISK REFERENCE SYSTEM

VLBI view 1. $-r \leq 2000 \text{ AU}$

SYMBOLS —

6.7 GHz CH₃OH maser cloudlets:

• <u>with</u> linearly polarized emission

Sanna et al. 2015, arXiv:1509.05428

COMBINING VELOCITY & MAGNETIC FIELDS

VLBI view 2. — $r \leq 2000 \text{ AU}$

SYMBOLS -

- 6.7 GHz CH₃OH maser cloudlets:
- with linearly polarized emission
- O without linearly polarized emission

- I. Average speed 7 km s⁻¹
- II. Gas flow collimation at 1000 AU from the disk plane (Reg.2)
- III. Outward stream along the disk plane for R > 500-600 AU (Reg.1)
- IV.Inward stream along the disk plane R < 500-600 AU (Reg.3) with:

$$\dot{M}_{in} = 2 \times 10^{-4} \, M_{\odot} \, yr^{-1}$$

Sanna et al. 2015, arXiv:1509.05428

COMBINING VELOCITY & MAGNETIC FIELDS

SYMBOLS -

- $6.7 \text{ GHz} \text{ CH}_3\text{OH}$ maser cloudlets:
- with linearly polarized emission
- O without linearly polarized emission

- V. Smooth \boldsymbol{B} change of 0.2 $^{\circ}$ AU^{-1} in Reg.1 and 2
- VI. Average tilt between $\vec{V}(r)$ and $\vec{B}(r)$ of 30°
- VII. Turbulent velocity field of 3.5 km s^{-1} ?

Sanna et al. 2015, arXiv:1509.05428

MODEL COMPARISON: MHD SIMULATIONS

VLBI view 4. — $r \leq 2000 \text{ AU}$

