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Can we ‘see’ the wind??
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Emission lines formed in the wind will appear blueshifted as the material
moves radially towards the observer for specific lines of sight



[Nell] 12.8um a wind diagnostic?
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[OI] 6300A a better wind diagnostic?
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[OI] 6300A a better wind diagnostic?

L(LVC) ~ 10 4

blueshifted by a few km /s CW Tau
HVC r = 1.7

EUV wind is fully ionised

L([O1]) < 10 \ \

(Font et al 2004) 2 | LVC

|

X-ray wind is quasi-neutral |
L([OI]) > 10 |
(Ercolano & Owen 2010)
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FiG. 5.— [O 1] luminosity versus X-ray luminosity for the

subsample of 21 Sample II objects with X-ray luminosities
(Lx) found in the literature.
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FiG. 5.— [O 1] luminosity versus X-ray luminosity for the

subsample of 21 Sample II objects with X-ray luminosities
(Lx) found in the literature.

Er_‘lano & Owen (2010)

[ HVC B
| LVC o

'
N

logLyoija00 (Lo)
IS

)




) 1 L I I L\l L} | 1 I ) 1 1 L] l I L] | 1 ] L | 1 L]

I
(A}
v

Rigliaco et al (2013)

logLygeace(LVC) (L)
2
2

22 il 1 1 1 1 1 1 | 1 1 1 1 l 1 1 1 1 ~. ‘ L ' S
-5.5 -4.5 -4 -3.5 -3

logLy (Ly)

FiG. 5.— [O 1] luminosity versus X-ray luminosity for the

subsample of 21 Sample II objects with X-ray luminosities
(Lx) found in the literature.
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see also Natta et al. (2014)

for a discussion of the
|SII] 4069 line




2.4.1. Collisionally Excited Lines See Various Textbooks e.g. Osterbrock
or here Hamann & Ferland 1999

Collisionally excited lines form by the internal excitation of an ion after electron impact.
equilibrium of the energy levels. For example, the equilibrium (detailed balance) equation fo

nneQu = Nu(BAu +nequ) [Cm—B 5—1]
where n, is the electron density, 3 is the probability for line photons escaping the local regi

lower states, and g, and g, are the upward and downward collisional-rate coefficients, res
most applications, the ions are mainly in their ground state and »; is approximately the ionic

Neqiy

BAu + neqy

€call = NuBA hv, = nz_&-lulhvo( 3. s_l]

) lergs cm

where 1, is the line frequency. This emissivity has a strong temperature dependence because
high-density limit we have,

Ecall = MBA hv,

and the levels are said to be thermalized. Line thermalization, where ¢_,;; no longer depe
oscillator strength, which therefore drops out of the factor 3 A, = A/7 in Equation 3 if 7 >2
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F1G. 1.— Isothermal model spectrum for Log(Tx) = 7.2.
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F1G. 1.— Isothermal model spectrum for Log(Tx) = 7.2.
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F1G. 1.— Isothermal model spectrum for Log(Tx) = 7.2.
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F1G. 1.— Isothermal model spectrum for Log(Tx) = 7.2.
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F1G. 1.— Isothermal model spectrum for Log(Tx) = 7.2.



107"
w 107
3
-
o
© 1077
=
149
S
e 1074

raccretion [component -» BB(12k K
105 Lace = axl_bol
10‘°' . : _1
100 1000 10000
E [eV]

F1G. 1.— Isothermal model spectrum for Log(Tx) = 7.2.



) 1 | J | l 1 L | 1 l | | 1 1] I 1 L I | ] L 1 1 ]
—_~ =2 - -
=g !
~ L+
& 0 o
% T ) o “o o ° 7
2 - o © 029 o : Observational points
® ° & ° . from Rigliaco et al (2013)
2 -6} -

L 1 | L l 1 L 1 1 l L 1 1 L l 1 L L 1 l L 1 1 L |

-9.0 -9 -4.5 -4 -3.5 -3
logLy (Ly)

Fic. 5.— [O 1] luminosity versus X-ray luminosity for the
subsample of 21 Sample II objects with X-ray luminosities
(Lx) found in the literature.
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(Lx) found in the literature.
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FiG. 5.— [O 1] luminosity versus X-ray luminosity for the
subsample of 21 Sample II objects with X-ray luminosities
(Lx) found in the literature.

Ercolano et al. (2016)

Lacc = Lbol; Chromospheric
UV (<100eV) suppressed

Observational points
from Rigliaco et al (2013)

I Ercolano & Owen (2010)
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FiG. 5.— [O 1] luminosity versus X-ray luminosity for the
subsample of 21 Sample II objects with X-ray luminosities
(Lx) found in the literature.
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(Lx) found in the literature.
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Rigliaco et al (2013)
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Ercolano et al. (2016) WITH neutral H contribution
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Problem:

Significant contribution from collisions with neutral H.

Atomic data exists only for the [OI] 6300 line but NOT for the [OI] 5577 line.
Hence only an upper limit to the [OI] 6300/[OI] 5577 ratio can be obtained.



Ercolano et al. (2016) WITH neutral H contribution

Rigliaco et al (2013)
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Ercolano et al. (2016) WITHOUT neutral H contribution

Problem:

Significant contribution from collisions with neutral H.

Atomic data exists only for the [OI] 6300 line but NOT for the [OI] 5577 line.
Hence only an upper limit to the [OI] 6300/ [OI] 5577 ratio can be obtained.
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Erco'lano & Owen (2010)

Accretion radiation is able to warm up the wind
~up to about 30AU above the disc mid plane
(chromospheric EUV only up to ~14AU), hence
sampling a larger range of wind velocities, which
results in a larger FWHM for the forbidden lines.

Ercolano et al. (2016)
‘_ Lacc = Lbol
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CONCLUSIONS

. The observations are consistent with a thermal origin of the
[O1] 6300 line (and other forbidden lines) in an X-ray driven
photoevaporative wind

. The emission region [Ol] 6300 is mainly from the EUV
warmed layer of the X-ray driven photoevaporative wind
(hence the observed correlation with Lacc)

. The [Ol] 6300/[Ol] 5577 ratio agrees with observed values if
the HO contributions to [Ol]6300 are removed - A detailed
study requires collision strengths for the [Ol]5577 line

. The FWHM from the models are in rough agreement with the
observations
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