

Faculty of Science Institut für Astronomie und Astrophysik

Accretion Ejection Connection with Second Generation VLT Instruments

Emma Whelan

Collaborators: Juan Alcalá, Francesca Bacciotti, Nuria Huélamo, Fernando Comerón, Brunella Nisini, Catherine Dougados

2nd Generation Instruments

X-Shooter: broad-band spectrograph, UVB, VIS, NIR arms from 300nm to 2.5 μ m, long-slit / IFU, R = 3300 to 17400 depending on arm and slit-width, seeing limited

2nd Generation Instruments

X-Shooter: broad-band spectrograph, UVB, VIS, NIR arms from 300nm to 2.5 μ m, long-slit / IFU, R = 3300 to 17400 depending on arm and slit-width, seeing limited

MUSE: Integral-field spectrograph, spectra from 465nm to 930nm R = 3000 WFM: 1' x 1' FOV, no AO, pixel scale = 0".2 WFM + AO : 1' x 1' FOV

NFM + AO : 7".5 x 7".5 FOV, sampling= 25mas

Π

Object	Type	Instrument
ESO-HA 574	CTTS - very low luminosity	X-Shooter Bacciotti + 11 Giannini + 13
Par-Lup3-4	Very Low Mass - 0.13 M_{\odot}	X-Shooter J Whelan + 14a
SO-Cha I 217	Brown Dwarf - 80 MJUP	X-Shooter Whelan + 14b
LkCa 15	Transitional Disk	X-Shooter Whelan + 15 Whelan + 16 in prep
Sz 102	CTTS	X-Shooter MUSE in prep
HH 399	Irradiated Disk	MUSE in prep

Morphology and Kinematics

Bacciotti +. 2011, Whelan +. 2014a

To be observed in Chandra Cycle 17

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Morphology and Kinematics

MUSE Observations of SZ 102 in H α

MUSE Observations of HH399

WFM + AO a big bonus for this work

Diagnostics - X-Shooter

[SII]λ6716 / [SII]λ6731 (n.) [SII]λ6716 / [SII]λ6731 (n-1) $[SII]\lambda 4068 + [SII]\lambda 4076 / [SII]\lambda 6716 + [SII]\lambda 6731 (T_{o})$ [OI]λ6300 / [SII]λ6731 (T.) [NII]λ6583 / [OI]λ6300 (×.) [NII]λ6583 / [OI]λ6300 (×.) $[SII]1.03 / [SII]\lambda 6716 + [SII]\lambda 6731 (T_{e})$ $[SII]1.03 / [SII]\lambda 6716 + [SII]\lambda 6731 (T_{\bullet})$ Par-Lup 3-4 ESO-Hα 574 10.0E В R 1.0 Line Ratio 0.1 -5 0 5 -2 0 -4 2 Distance along Outflow Distance Along Outflow

The Diagnostic Potential of Fe Lines Applied to Protostellar Jets

Giannini et al. 2015ApJ...798...33G Giannini et al. 2013ApJ...778...71G

Accretion and Outflow Rates

Alcala + 2014, Stelzer + 2013 Manara + 2015, Rigliaco + 2011, 2012

Spectral Type and Extinction directly estimated from X-Shooter data

Accretion and Outflow Rates

Whelan +. 2014a

Accretion Indicator

Accretion Indicator

Outflow Efficiency in Brown Dwarfs

Jet extinction can be estimated from NIR Fe lines

Outflow and Accretion Rates Whelan +. 2014b

Outflow Efficiency in Brown Dwarfs

Table 2. Jet physical parameters and \dot{M}_{out} for the ISO-ChaI 217 blue and red jets.

A (mag)	0.0	1.0	2.5
A_v (mag)	0.0	1.0	2.5
$n_{\rm e}$ Blue (cm ⁻³)	4610	4700	4920
$n_{\rm e} {\rm Red} ({\rm cm}^{-3})$	5490	5630	5750
$T_{\rm e}$ Blue (10 ⁴ K)	2.15	2.24	2.34
$T_{\rm e} {\rm Red} (10^4 {\rm K})$	1.63	1.71	1.81
$x_{\rm e}$ Blue	0.078	0.063	0.048
$x_{\rm e}$ Red	0.045	0.040	0.034
$n_{\rm H}$ Blue (10 ⁴ cm ⁻³)	6.0 ± 0.8	7.5 ± 1.0	10.3 ± 1.4
$n_{\rm H} {\rm Red} (10^4 {\rm cm}^{-3})$	12.2 ± 4.4	14.0 ± 5.0	17.0 ± 6.2
Method B			
$L_{\rm SII}$ Blue (10 ⁻⁸ L_{\odot})	1.1 ± 0.3	2.3 ± 0.4	5.6 ± 1.0
$L_{\rm SII}$ Red (10 ⁻⁸ L_{\odot})	1.4 ± 0.3	2.8 ± 0.5	6.9 ± 1.2
$\dot{M}_{\rm out} \ (10^{-12} \ M_{\odot} {\rm yr}^{-1}) \ {\rm Blue}$	0.7 ± 0.2	1.4 ± 0.3	3.3 ± 0.7
$\dot{M}_{\rm out} \ (10^{-12} \ M_{\odot} {\rm yr}^{-1}) \ {\rm Red}$	1.2 ± 0.5	2.3 ± 0.9	5.3 ± 2.1
$(\dot{M}_{out} Blue + \dot{M}_{out} Red)/\dot{M}_{acc}$	0.05 (+0.07)(-0.02)	0.09 (+0.14)(-0.04)	0.20 (+0.30)(-0.09)

Notes. A_v here refers to the extinction of the jet and the calculations are made for three values of A_v to investigate the dependence on the jet extinction. The mean value of \dot{M}_{acc} (\dot{M}_{acc} mean = 4 × 10⁻¹¹ M_{\odot} yr⁻¹) is used to calculate $\dot{M}_{out}/\dot{M}_{acc}$ and \dot{M}_{acc} is derived from the fluxes of the accretion tracers listed in Fig. 8 corrected for an on-source extinction 2.5 ± 0.3 mag.

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

LkCa 15

Morphology and Kinematics: Compare kinematics and morphology in many lines eventual high. ang. res. of MUSE will be a big advantage, edge-on disks, precession, proper motions, asymmetries

Diagnostics: Important for jet launching models, X-Shooter ideal for this, access to high excitation lines like [Ne III] or He I 1µm, Fe lines are a new tool. Although MUSE has a shorter wavelength range it brings 2D perspective and high. ang. res.

Outflow and Accretion Rates: X-Shooter dominates here as can use the broadband to estimate A_v source, A_v jet and spectral type. Many lines can be used to estimate M_{acc} . Sensitive enough to easily detect BD jets.