Studying the accretion - ejection structure via 3D MHD simulations: jets from binary systems

Somayeh Sheikhnezami^{1,2} Christian Fendt ²

1) Institute for Research in Fundamental Sciences (Iran)

2) Max Planck Institute for Astronomy (Germany)

Outlines

- Background / Motivations
- Numerical setup of the model
- Single star/disk/jet setup
- Binary star/disk/jet setup
- Results and discussion

Our recent works

Axisymmetric launching:

Bipolar Jets Launched from Magnetically Diffusive Accretion Disks. I. Ejection Efficiency versus Field Strength and Diffusivity, Sheikhnezami, S., et.al 2012, ApJ, 757, 65

✤ Bipolar jet asymmetry :

Bipolar Jets Launched from Accretion Disks. II. The Formation of Asymmetric Jets and Counter Jets, Fendt, C. & Sheikhnezami, S. 2013, ApJ, 774, 12

Including the evolution of a disk-dynamo:

Modeling MHD accretion-ejection-episodic ejections of jets triggered by a mean-field disk dynamo, Stepanovs, D., Fendt, C., Sheikhnezami, S. 2014, APJ

Poster session, Christian Fendt

Our current study: 3D MHD jet launching Motivations

- To develop a proper model setup for jet launching in 3D
- To study the stability and symmetry of jet and counter jet
- ✤ To investigate 3D potential effects of jets launched in a binary system:

Numerical setup

Cartesian grid & PLUTO code (Mignone et.al 2007)

Uniform grid at -5 < x, z, y < 5 + Stretched grid

Initial rotation profile

Initial state

Axisymmetric setup - extended to three dimensions

$$\begin{split} \Psi &= \frac{4}{3} B_{z_{0,i}} r_i^2 (\frac{r}{r_i})^{3/4} \frac{m^{5/4}}{(m^2 + (z/r)^2)^{5/8}} & \text{Magnetic flux (Zanni et.al 2007)} \\ A_{\varphi} &= \frac{\Psi}{r} & \text{Magnetic vector potential} \\ \eta &\propto h_i(x, y, z) & \text{Magnetic Diffusivity} \\ h_1(x, y, z) &= \exp(\frac{-2z^2}{H^2}) & h_2(x, y, z) = \exp(\frac{-2z^2}{H^2})(1 + \frac{0.1}{\exp(1 - r)}) \\ h_3(x, y, z) &= \eta_0 & z < 10 \end{split}$$

Parameter runs

- η : Magnetic diffusivity
- q: Secondary to primary Mass ratio
- *D*: Horizontal separation
- h: Vertical separation
- L_1^p : Inner Lagrange point
- β : Gas pressure to magnetic pressure ratio

Simulation runs

Run	η	q	h	D	β	$L_{1}^{\mathrm{p}}\left[x,y,z\right]$
Single s	tar with jet launc	hing	g disk	ŝ.		
scase1	0.03	2 .0 2	s÷.	÷.	20	Ξ.
scase2	0.03 for $z < 10$	323	32	23	20	<u>_</u>
scase3	$3h_2V_A$	3 . 22	S t		20	3.
scase4	$0.03h_{3}$	120	34	- 23	20	_
scase5	$0.03h_2$.	27		20	-
scase6	0.03 for z < 5	-	-	-	20	2
Binary :	system with jet la	unc	hing	disk a	round	l primary
bcase1	0.03 for $z < 10$	2	60	300	20	(130, 0, 26)
bcase2	0.03	1	60	200	20	(100,0,30)
bcase3	0.01	2	60	300	20	(130,0,26)
bcase4	0.03 for $z < 10$	2	60	200	20	(130.0.26)

October 2015

3D MHD simulation of single star/disk /jet

3D MHD simulation of single star/disk /jet

- Reference run lasts for 600 rotations at inner disk radius.
- Overall large-scale outflow keeps axial and bipolar symmetry.
- Outflow reaches super Alfvenic and super fast speed.
- Disk perturbation (instability???)

ACCRETION / OUTFLOW IN YSOS

11

Implemented 3D gravitational potential due to a secondary:

$$\Phi = -\frac{GM_{p}}{|\vec{r}|} - \frac{GM_{s}}{|\vec{r} - \vec{r}_{s}|} - \frac{1}{2}\Omega^{2}|\vec{r} - \vec{r}_{CM}|^{2}$$

$$\Omega = \sqrt{\frac{G(M_p + M_s)}{\left|D + h\right|^3}}$$

Equipotential surfaces of the 3D Roche potential

$$q = M_s / M_p = 2$$
$$D = 100r_0$$

ACCRETION / OUTFLOW IN YSOS

bcase1, $D = 300r_i$, $h = 60r_i$, $\beta = 20$ q = 2

Evolution of mass density distribution, y-z plane

Evolution of mass density distribution, x-y plane

ACCRETION / OUTFLOW IN YSOS

We observe numbers of non-axisymmetric effects:

- Jet inclination : Changing the disk alignment with respect to the initial mid plane
- Spiral arms : After dynamical time 1000 axial symmetry is broken and finally leads to a structure that looks like spiral arms.
- ✤ Disk perturbation : small-scale fluctuations appears in density, pressure and velocity at intermediate radii , $20r_i < r < 60r_i$ at around time 1500

Magneto rotational instability (MRI) !!??

"close binary system"

```
D = 200r_i h = 60r_i q = 2 \beta = 20
```

Mass density **Velocity vectors**

Cycle: 0

Non-axisymmetric effect: disk warping

Disk warping is induced by combination of two effects:

- Disk misalignment with respect to the initial mid-plane
- Disk inflation (initiating the Roche overflow)

Non-axisymmetric effect: jet precession

Cross section of velocity in x-y plane after 5000 dynamical time steps

- Indication for onset of jet precession :
- jet axis follows the cone of 4 degree opening angle

Summary

- ***** We have extended our previous axisymmetric setup to fully 3D
- The quality of model is confirmed with a well kept axial and bipolar symmetry of the large sacle disk-outflow in the long term simulation
- ***** We implemented 3D gravitational potential due to a secondary.
- We are observe number of non-axisymmetric effects in binary star/disk/jet setup : jet inclination, disk perturbation, spiral arms
- Other non axisymmetric effects are observed in closer binary setup: disk warping, jet precession

Thanks For Your Attention

October 2015

ACCRETION / OUTFLOW IN YSOS