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Accretion Disks are Awkward

Credit: J. Bally (University of Colorado) and H. Throop (SWRI)
@ Accretion disks:
@ “Small”

@ Weakly ionized

@ Possibly turbulent
- TPDownes (DCU)
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Weakly ionized multifluid MHD

Weakly ionized systems

Initial considerations:
© Want to use the continuum approximation
©@ Take account of differing motions between neutrals and charged
species
© Don’t want to solve the Poisson equation
Approximations:
© The velocity of the fluid as a whole is the velocity of the neutrals
@ For charged species, collisions with neutrals dominate
© Inertia of the charged species is negligible
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Weakly ionized multifluid MHD

Generalised Ohm'’s Law

@ Generalised Ohm'’s law (in principle) removes requirement for
Poisson equation

@ Derive this from the N momentum equations for charged species

1
aipi(E+ cvix B) +fi1 =0, (1)
fj = pipiKij(vj — vi). )
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Weakly ionized multifluid MHD

The multifluid MHD equations

The equations for our (isothermal) weakly ionized system are then

Ipi
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Numerical Set-up

Numerical set-up

Aim

@ O’Keeffe & Downes (2014) published first fully multifluid sims

@ Extend this study to investigate impact of radially varying
parameters

@ Investigate appropriate canonical time-scales of the problem
@ |s the orbital time, or growth time of the MRI, always appropriate?
@ What are turbulent time-scales?

Focus here on time-scales
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Numerical Set-up

Numerical set-up

@ (Quasi-)Global simulations

@ Cartesian grid

@ Weakly ionised multifluid approximation (3 fluids)
@ Wavekilling boundaries

@ Radially stratified ionisation and density
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Numerical Set-up

Density distribution

@ Neutral Density:

—L20 __ ifr <0.8r;
_ ) 83 -
pn(r) { 2 otherwise

where pp = 2.33 x 1071%gcem~3,
@ |onisation fraction quadratic in r, fitted to match Salmeron &
Wardle (2003)

T.P. Downes (DCU) Multifluid Accretion Disks 28th October, 2015 9/21



Numerical Set-up

The other stuff

@ Initial temperature 280K

@ Net initial magnetic flux of 100 mG

@ Radial range: 1 AU - 6 AU

@ Resolution 512 x 512 x 64

@ Well resolved for MRI (Hawley 2013).
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Numerical Set-up

Schematic of set-up
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Results

Neutral Density evolution
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Results

Relevant Time-scales

@ Typically take the orbital period as representative time-scale
@ Often combine with Alfvén speed to get length-scale
@ Ignores turbulent cascade, Whistler waves
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Results

Two other possibilities

@ Eddy turn-over time
[
f o~ —— ~ |(3—Oz)/2
IRV ()
@ Mean/median turbulent speed with ionisation profile length-scale
@ Typical MRI velocity ~ 10*cms™?
@ At 2 AU equilibrium ionisation length-scale < 1 AU (Salmeron &
Wardle 2003)
@ Time-scale: tg ~ 10%s, t, < tr (e.g. Lesur et al 2014)
@ If ionisation varies rapidly then time-scale can be less than orbital
period
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Resistivities

Results

r [au]
Evidence of strongly varying resistivities
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Results

Magnetic field evolution
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Multifluid effects particularly significant at low r
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Results

Anomalous viscosity
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Conclusions

Conclusions

@ Resistivities can be strongly varying

@ Hall dominated region can be large (no need to dominate
induction term to have impact)

@ Magnetic field in ideal MHD does not approximate multifluid
structure well

@ Correct time-scale for modelling may not be the orbital one

@ Radial time-scale may be short
@ \ertical time-scale may be much shorter
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