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Context

Accretion Disks are Awkward

Credit: J. Bally (University of Colorado) and H. Throop (SWRI)

Accretion disks:
“Small”
Weakly ionized
Possibly turbulent
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Weakly ionized multifluid MHD

Weakly ionized systems

Initial considerations:
1 Want to use the continuum approximation
2 Take account of differing motions between neutrals and charged

species
3 Don’t want to solve the Poisson equation

Approximations:
1 The velocity of the fluid as a whole is the velocity of the neutrals
2 For charged species, collisions with neutrals dominate
3 Inertia of the charged species is negligible
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Weakly ionized multifluid MHD

Generalised Ohm’s Law

Generalised Ohm’s law (in principle) removes requirement for
Poisson equation

Derive this from the N momentum equations for charged species

αiρi(E +
1
c

vi × B) + fi1 = 0, (1)

fij = ρiρjKij(vj − vi). (2)
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Weakly ionized multifluid MHD

The multifluid MHD equations

The equations for our (isothermal) weakly ionized system are then

∂ρi

∂t
+∇ · (ρivi) = 0, (3)

∂ρ1v1

∂t
+∇ ·

(

ρ1v1v1 + a2ρ1I
)

= J × B, (4)

∂B
∂t

+∇ · (v1B − Bv1) = ∇×

(

r0
(J · B)B

B2 − r1
J × B

B
(5)

+r2
B × (J × B)

B2

)

, (6)

∇ · B = 0, (7)

∇× B = J. (8)
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Numerical Set-up

Numerical set-up

Aim

O’Keeffe & Downes (2014) published first fully multifluid sims

Extend this study to investigate impact of radially varying
parameters
Investigate appropriate canonical time-scales of the problem

Is the orbital time, or growth time of the MRI, always appropriate?
What are turbulent time-scales?

Focus here on time-scales
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Numerical Set-up

Numerical set-up

(Quasi-)Global simulations

Cartesian grid

Weakly ionised multifluid approximation (3 fluids)

Wavekilling boundaries

Radially stratified ionisation and density
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Numerical Set-up

Density distribution

Neutral Density:

ρn(r) =

{

ρ0
(0.8rin)3 if r ≤ 0.8rin,
ρ0
r3 otherwise

where ρ0 = 2.33 × 10−10 g cm−3.

Ionisation fraction quadratic in r , fitted to match Salmeron &
Wardle (2003)
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Numerical Set-up

The other stuff

Initial temperature 280 K

Net initial magnetic flux of 100 mG

Radial range: 1 AU - 6 AU

Resolution 512 × 512 × 64

Well resolved for MRI (Hawley 2013).
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Numerical Set-up

Schematic of set-up
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Numerical Set-up

Multifluid effects
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Results

Neutral Density evolution

Initial and final neutral densities
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Results

Ionisation fraction evolution
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Results

Relevant Time-scales

Typically take the orbital period as representative time-scale

Often combine with Alfvén speed to get length-scale

Ignores turbulent cascade, Whistler waves
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Results

Two other possibilities

Eddy turn-over time

tl ∼
l

v(l)
∼ l(3−α)/2

Mean/median turbulent speed with ionisation profile length-scale
Typical MRI velocity ∼ 104 cm s−1

At 2 AU equilibrium ionisation length-scale ≤ 1 AU (Salmeron &
Wardle 2003)
Time-scale: tR ∼ 109 s, tz ≪ tR (e.g. Lesur et al 2014)
If ionisation varies rapidly then time-scale can be less than orbital
period
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Results

Resistivities
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Results

Magnetic field evolution
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Results

Anomalous viscosity
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Conclusions

Conclusions

Resistivities can be strongly varying

Hall dominated region can be large (no need to dominate
induction term to have impact)

Magnetic field in ideal MHD does not approximate multifluid
structure well
Correct time-scale for modelling may not be the orbital one

Radial time-scale may be short
Vertical time-scale may be much shorter
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Conclusions

Conclusions

Turbulence is hard.
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